文章编号:1009-3850(2019)03-0048-07

贵州印江县铁厂村老堡组硅质岩地球化学特征 及沉积环境探讨

赵志强1, 贺同军1, 孙小浩2, 蔡柯柯1, 樊杰1, 王世伟3

(1. 重庆市地质矿产勘查开发局 607 地质队,重庆 400054; 2. 成都理工大学,四川 成都610059; 3. 重庆彭水苗族土家族自治县规划和自然资源局,重庆 彭水 409600)

摘要:通过岩性组合特征和岩石地球化学分析,认为贵州印江县铁厂村老堡组硅质岩的沉积环境为台地边缘斜坡至 台盆。硅质主要来源于陆源碎屑,不具热水沉积的特征。岩石地球化学特征研究表明,V/(V+Ni)值指示老堡组硅 质岩形成于静海环境,受陆源的影响较大。δCe值和(La/Ce)_N值表明老堡组硅质岩的沉积环境为开阔盆地和大陆 边缘之间,构造背景为大陆边缘。

关键 词:硅质岩;地球化学;沉积环境;物质来源

中图分类号:P595 文献标识码:A

引言

贵州地区的寒武系底部发育了一套黑色、灰黑 色层状硅质岩,层位稳定,厚度较大。其下部为震 旦系陡山陀组白云岩,上部为寒武系牛碲塘组黑色 页岩。目前已有学者^[1-13]对该套硅质岩进行了研 究,对其成因和物质来源等问题存在争议,有人认 为是热水沉积成因硅质岩^[4-5],也有人认为是生物 成因硅质岩^[2,6,9],还有人认为其物源主要来自大陆 风化^[9,13]。查明这套硅质岩的成因和物质来源,对 探讨当时的沉积环境具有重要意义。本文从地球 化学的角度对贵州印江县铁厂村老堡组剖面进行 了系统的研究,旨在探讨研究区埃迪卡拉纪—寒武 纪过渡时期沉积的这套硅质岩的形成环境和物质 来源。

1 地质背景

研究剖面位于扬子陆块与江南陆块的过渡区 (图1a)。研究区大地构造位置一级分区属羌塘-扬子-华南板块,二级分区属扬子陆块,三级构造 分区属上扬子地块和江南造山带^[14]。新元古代武 陵期形成的统一古华南大陆板块,是在 Rodinia 超 大陆裂解的构造动力学背景下开始发生裂解的,以 其上覆的下江期板溪群的典型裂谷盆地沉积地层 为代表,反映了统一的华南古大陆自 820Ma 以后, 主要在 820~740Ma 期间迅速转入伸展裂谷构造发 育期。区域上,雪峰期沉积了芙蓉坝组、甲路组、红 子溪组、张家坝组和清水江组。加里东期南华纪经 历了小冰期、间冰期和大冰期,小冰期沉积了两界 河组,间冰期沉积了大塘坡期。大冰期沉积了南沱

收稿日期: 2019-07-17; 改回日期: 2019-08-12

作者简介:赵志强(1983 -),男,高级工程师,主要从事区域地质和区域矿产调查工作。E-mail:350195123@qq.com 通讯作者:贺同军(1978 -),男,高级工程师,主要从事地质矿产勘查工作

资助项目:武陵山成矿带酉阳-天柱地区地质矿产调查(121201010000160904)

组。震旦纪陡山沱帽白云岩的出现标志着冰期结束,新的海侵开始。震旦晚期至寒武初期,海侵达 到最大化,形成盆地相的硅质岩、炭质页岩沉积 建造^[14-15]。

研究区震旦系至寒武系上统出露的地层主要 为南沱组、陡山陀组、老堡组、牛蹄塘组、九门冲组 (图1c)^[15]。

南沱组:岩性为灰色、绿灰色厚层 - 块状含砾 泥岩、含砾砂质泥岩、含砾泥质粉砂岩、含砾粉砂质 泥岩等,与下伏大塘坡组二段整合接触。

陡山陀组:岩性大致可以三分:下部以灰色、黄 灰色中层状泥质白云岩、细晶白云岩、硅质岩为主,

图 1 研究区大地构造位置图(a)、剖面图(b)、地质图(c)^[15]

Fig. 1 Tectonic setting (a), cross section (b) and geological map (c) of the Laobao Formation in Tiechang, Yinjiang, Guizhou (after Zhou Zhengmao et al. ,2018)

间夹粉砂岩,称"帽白云岩";中部为灰色、深灰色含炭质粉砂质页岩间夹灰色薄 - 中层状泥质白云岩; 上部为灰色薄 - 厚层状细晶白云岩,与下伏南沱组整合接触。

老堡组:岩性为黑灰、灰黑色薄层(偶夹中层) 状硅质岩、含炭质泥质硅质岩夹黑色硅质板岩、炭 质硅质页岩,与下伏陡山沱组断层接触。

牛蹄塘组:下部为黑色薄 - 中层状炭质泥岩, 上部为深灰、灰黑色薄 - 中层状含粉砂质炭质泥 岩,间夹灰黑色薄层状炭硅质页岩,自下而上炭质 含量逐渐减少,与下伏老堡组整合接触。

九门冲组:下部为灰色薄层状砂泥质灰岩与黄 灰色薄层状钙质粉砂岩互层;上部为灰黑色薄 – 厚 层状微 – 粉晶灰岩,间夹黑色页片状含粉砂质炭质 页岩,与下伏牛蹄塘组整合接触。

2 地球化学特征

本次工作在剖面上将震旦系老堡组分为4层, 每层取1件样品,共取4件样品,从下至上岩性依次 为硅质板岩、炭质硅质页岩、碎裂化硅质岩、含炭质 泥质硅质岩,采样位置如图1b所示。对样品分别进 行了主量元素、微量元素和稀土元素测试分析,其 中样品前处理及主量元素、微量元素、稀土元素测 试由澳实分析检测(广州)有限公司矿物实验室 完成。

2.1 主量元素

硅质岩中 Al、Fe、Mn、Ti 等元素是判别硅质岩 成因的重要标志。前人研究结果表明,Fe、Mn 元素 的富集与热水沉积作用相关,而 Al、Ti 的相对集中 则与陆源物质的介入有关^[16-17]。对于 Al、Fe、Mn 元 素,主要采用 Al/(Al + Fe + Mn)的比值来判别硅质 岩成因。Yamamoto 经过研究,认为热水沉积的硅质 岩 Al/(Al + Fe + Mn) 值小于 0.4, 受陆源影响的硅 质岩 Al/(Al + Fe + Mn) 值大于 0.4。海相沉积岩的 Al/(Al+Fe+Mn)值随着热水沉积物参与的程度而 减小,并以 Al、Fe、Mn 做三角图(图 2) 来判别硅质 岩成因^[16-17]。文中 Al/(Al + Fe + Mn) 值为 0.5~ 0.89,平均为0.73 > 0.4,可知老堡组的硅质岩形成 受陆源影响很大; Al-Fe-Mn 三角图解可知 2 号样品 落入非热液成因的硅质岩内,1号在其边缘附近,更 靠近非热液成因的硅质岩,3和4号样品更靠近 Al 元素一端,说明两个样品的形成与陆源物质的介入 关系较大。

目前 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ 值被认为是判别 硅质岩形成构造背景的一个较好的指标^[18-20]。其 中大陆边缘硅质岩的 $Al_2O_3/(Al_2O_3 + Fe_2O_3) = 0.5$ ~0.9;远洋盆地硅质岩的 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ =0.4~0.7;洋中脊硅质岩的 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ =0.4~0.7;洋中脊硅质岩的 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ $G_3) < 0.4$ 。Murray 系统总结了显生宙不同环境硅 质岩的地球化学特征,提出用 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ $-Fe_2O_3/TiO_2$ 图解(图 3)来判别硅质岩形成环 境^[18]。本文中 $Al_2O_3/(Al_2O_3 + Fe_2O_3) = 0.7 ~$ 0.93,平均值为 0.82,结合 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ Fe_2O_3/TiO_2 图解可知,本文硅质岩为大陆边缘硅质 岩,构造背景为大陆边缘。

Fig. 2 Al-Fe-Mn triangular diagram for the siliceous rocks from the Laobao Formation (after Yamamoto, 1987)

图 3 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ -Fe₂O₃/TiO₂图解^[18] Fig. 3 $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ vs. Fe₂O₃/TiO₂ diagram for the siliceous rocks from the Laobao Formation (after Murray, 1994)

					表1	印江县	铁厂村	老堡组	圭质岩主	三量元素.	含量(v	rt %)							
		L	able 1	Majoı	r eleme	nt conte	nts in tl	ne siliceo	ous rock	cs from 1	the Lao	bao Fo	rmation	(wt %	_				
样品编号	样品名称	Al_2O_3		aO	${\rm Fe}_2 0_3$	K ₂ (MgO	Mn(Na_2O	P_2	05	SiO_2		ΓiO_2	CO_2		^{1}eO
1	含炭质泥质硅质岩	4.66	×.	74	1.97	1.1.	3	4. 92	0.06	52	0. 15	0.	39	63.87	0	0. 17	12.42	1	. 35
7	碎裂化硅质岩	5.23	Ū	01	1.75	1.0	1	0. 34	0.00	8	0.04	0.	90	86.97	0). 22	0.41	0	. 22
ŝ	炭质硅质页岩	5.15	0	08	0.37	1.0	0	0.30	0.00	5	0.04	0.	04	89.38	0). 18	0.31	0	. 08
4	硅质板岩	4. 12	0	05	0.43	0.6	0	0. 23	0.00	8	0.05	0.	30	90.86)). 14	0.44	0	. 07
					表 2	印江县	!铁厂村	老堡组1	诖质岩邻	谈量元素	合量(1	(unde							
			Table 2	Trace	eleme	nt conte	nts in tl	ne siliceo	ous rock	s from t	the Lao	bao Fo	rmation	(mdd)					
样品编号	样品名称	Sr	Zr	Cr	Ηf	Au	Nb	Та	Ba	Λ	Co	Ni	Cu	Zn	Ga]	Rb V	/ Pb	Th	n
1	含炭质泥质硅质岩	484	56.0	41.0	1.10	< 0.1	3.58	0. 23	1005	30.8	4. 48	8. 14	8. 69 3	82.6 6	. 65 4	8.3 41	3 3.86	5.17	2.90
7	碎裂化硅质岩	86. 0	63.0	47.0	0. 20	< 0. 1	3.31	0. 24	1651	70.8	9.80	8.17	13.7 3	31.7 6	. 57 3.	2.9 12	6 5.78	5.09	1.99
ŝ	炭质硅质页岩	53.0	56.0	46.0	0.15	< 0. 1	3.42	0.001	6635	43.8	16.8	0.013	6. 61 3	6.91 6	. 83 21	6.7 25	1 14.3	2.98	1.51
4	硅质板岩	328	47.0	22.0	0.20	< 0. 1	2.51	0.11	4726	32. 7	15.7	0. 012	5.87 5	6.90 4	. 87 11	2.9 22	2 1.53	2.30	1. 28
					表 3	印江县	! 铁厂村	老堡组	诖质岩	希土元素	含量(1	(udd							
			Tal	le 3 I	REE CC	ontents ir	n the sil	iceous r	ocks fro	m the L	aobao	Format	ion (pp	m)					
样品编号	样品名称	Υ	La	Ce	Ŀ	Nd	Sm	Eu	\mathbf{Gd}	Tb	Dy	Но	Er	Tm	Yb	Lu I	aN/YbN	δEu	δCe
1	含炭质泥质硅质岩	22. 7	13.1	9 23.	1 3.6	8 23.8	5.56	1. 53	3.69	0.87	5.38	1.02	2. 79	0. 37	2.46	0. 34	0. 53	1.57	0.77
2	碎裂化硅质岩	16. 0	10.	9 15.0	6 2.4	8 14.0	2.95	0.84	1.97	0.50	3.65	0.81	2. 21	0. 36	2.41	0.41	0.43	1.63	0.71
3	炭质硅质页岩	11.4	8.0	9 10.0	0 1.5	1 7.63	1. 23	1.66	0.92	0.26	2. 13	0. 53	1.54	0. 29	2. 28	0.47	0.33	7.27	0.67
4	硅质板岩	16.2	6.3	9.6	7 2.1	9 16.4	5.40	1.99	3.40	0.62	3.51	0.68	1.68	0. 27	1. 89	0. 38	0.32	2. 15	0.61
5	北美页岩		31.	5 66.	5 7.	9 27	5.9	1.18	5.2	0. 79	5.8	1.04	3.4	0.5	2.97	0. 44			

2.2 微量元素

Jones 和 Manning 提出, V/(V+Ni) 值可以反映 沉积物形成时的氧化还原环境,即 V/(V+Ni)小于 0.46 时为氧化环境、0.46~0.57 为弱氧化环境、 0.57~0.83 为缺氧环境、0.83~1 为静海环境^[21-22]。 文中 V/(V+Ni) 值为0.79~1.0, 平均为0.92, 可知 本文老堡组硅质岩应为缺氧至静海环境。

U/Th 值也可以用来指示硅质岩的沉积物源与 热水成因的关系。热水沉积硅质岩 U/Th 值大于 1, 而非热水沉积硅质岩 U/Th 值小于 1^[22-23]。文中 U/ Th 值为 0.39~0.56,平均为 0.5 < 1,该硅质岩应为 非热水沉积硅质岩。

稀土元素 2.3

Murray 等认为, δCe 和(La/Ce)_N对环境的指示 意义更明显^[11,18]。其中大洋中脊附近的硅质岩 δCe 的值为0.3±0.13,(La/Ce)_N≥3.5;开阔洋盆的硅 质岩 δCe 的值为 0.6±0.11,(La/Ce)_N=2~3;大陆 边缘的硅质岩 δCe 的值为 1.09 ±0.25,(La/Ce),值 接近1^[18,20]。印江县铁厂村老堡组硅质岩 δCe 值为 0.61~0.77,平均值为0.69;(La/Ce) 流值为1.55~ 2.1 平均为1.79,判断硅质岩的沉积环境处于开阔 盆地和大陆边缘之间。

Table 4 Element ratios in the siliceous rocks from the Laobao Formation Al_2O_3 Fe₂O₃ A1 U 样品编号 样品名称 (La/Ce)_N $\overline{Al + Fe + Mn}$ $\overline{V + Ni}$ Th $\overline{\text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3}$ TiO₂ 1 含炭质泥质硅质岩 0.50 0.56 1.55 0.70 11.49 0.79 7.96 2 碎裂化硅质岩 0.66 0.39 1.80 0.75 0.90 3 炭质硅质页岩 0.89 0.51 2.10 0.93 2.01 1.00 0.91 4 硅质板岩 0.86 0.55 1.71 3.12 1.00

表 4 印江县铁厂村老堡组硅质岩元素比值表(重量比)

图 4 铁厂村老堡组硅质岩野外露头照片 Field outcrops of the siliceous rocks from the Fig. 4 Laobao Formation

沉积环境探讨 3

铁厂村老堡组硅质岩具层状构造,隐晶质结 构。岩石主要由石英、玉髓、粘土矿物、炭质及少量 的碳酸盐矿物组成。其中石英为他形粒状,次棱角 状;玉髓为隐晶质,无色,透明:碳酸盐矿物为他形 粒状;粘土矿物为隐晶质,发生轻微绢云母化蚀变, 有大量黑色炭质与粘土矿物混杂在一起,炭质较集 中分布,呈层理构造(图4和图5)。根据该层硅质 岩的结构、构造和矿物特征可知硅质岩的形成受陆 源碎屑的影响较大。

图 5 铁厂村老堡组硅质岩偏光显微镜图片 Photomicrograph of the siliceous rocks from the Fig. 5 Laobao Formation

埃迪卡拉纪—寒武纪过渡时期的 CO,浓度是今 天的 20 倍^[11,24]。大气中的高 CO,含量会导致大陆 的化学风化特别强烈,大量的碱质、重碳酸根、硫酸 盐和硅质会通过河流被带入到海洋中,此时洋中脊 扩张和海底热液活动相对较弱^[11,13]。在此背景下, 我国南方碳酸盐台地形成了大量的碳酸盐,在水相 对较深的斜坡和盆地内形成了大量的硅质岩[11,13]。 文中 V/(V+Ni)值指示老堡组硅质岩应为静海环 境,Al/(Al+Fe+Mn)值和 Al、Fe、Mn 三角图显示 老堡组硅质岩受陆源的影响较大,与此时环境相吻 合;Al,O,/(Al,O,+Fe,O,)值和 Al,O,/(Al,O,+Fe, O₃)-Fe₂O₃/TiO₂图解指示本文硅质岩形成构造背景 为大陆边缘,δCe 值和(La/Ce),值表明本文老堡组 硅质岩的沉积环境处于开阔盆地和大陆边缘之间。 周正茂、李核良等(2019)认为本区老堡组下伏地层 陡山陀组形成环境为陆源碎屑与碳酸盐岩混合沉 积的浅海陆棚,其上覆地层牛蹄塘组为滞留盆地 环境^[15]。

常华进等^[13]对桂北泗里口老堡组硅质岩进行 了较为详细的研究,认为该硅质岩形成于深水盆 地,其形成受海底热液的影响较小,硅质主要来源 于河流搬运到海洋中溶解的 SiO₂。结合岩相古地 理^[13,25]可知,桂北泗里口接近于盆地中心,而贵州 老厂村位于盆地边缘。

综上可知,本区老堡组硅质岩形成于台地边缘 斜坡至台盆环境中,其硅质来源受陆源碎屑的影响 较大。

4 结论

(1)形成于震旦系(埃迪卡拉纪—寒武纪过渡 时期)老堡组的硅质岩受海底热液的影响较小,受 陆源碎屑的影响较大,不具热水沉积的特征。

(2)贵州合水镇老堡组硅质岩沉积环境为台地 边缘斜坡至台盆环境。

参考文献:

- [1] 伊海生,彭军,夏文杰. 扬子东南大陆边缘晚前寒武纪古海洋 演化的稀土元素记录[J]. 沉积学报,1995,13(4):13-137.
- [2] 唐世荣,王东安,李任伟. 湘川地区震旦—寒武系硅岩的有机 岩石学研究[J]. 沉积学报,1997,15(1):54-59.
- [3] 陈孝红,汪啸风,毛晓冬.湘西地区晚震旦世黑色岩系地层层 序、沉积环境与成因[J].地球学报,1999,20(1):87-95.

- [4] 彭军,伊海生,夏文杰. 湘黔桂地区晚前寒武纪层状硅质岩地 球化学特征及成因[J]. 地质地球化学,1999,27(4):33-39.
- [5] 彭军,夏文杰,伊海生. 湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J]. 岩相古地理,1999,19:29-37
- [6] 赵国连. 生物作用在二氧化硅聚集沉淀过程中的意义—以皖 南浙西的硅质岩为例[J]. 沉积学报,1999,17(1): 30-37.
- [7] 彭军,徐望国.湘西上震旦统层状硅质岩沉积环境的地球化学标志[J].地球化学,2001,30:293-298.
- [8] 胡杰. 桂东北较深水相前寒武纪之交的硅质微生物岩[J]. 微体古生物学报,2008,25(3):291-305.
- [9] 常华进,储雪蕾,冯连君,等. 湖南安化留茶坡硅质岩的 REE 地球化学特征及其意义[J].中国地质,2008,35:879-887.
- [10] 常华进,储雪蕾,冯连君,等.华南老堡组硅质岩中草莓状黄铁矿---埃迪卡拉纪末期深海缺氧的证据[J].岩石学报, 2009,25:1001-1007.
- [11] 杨兴莲,朱茂炎,赵元龙,等. 黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征[J]. 地质论评,2008,54(1):3-15.
- [12] 张位华,姜立君,高慧,杨瑞东.贵州寒武系底部黑色硅质岩成因及沉积环境探讨[J].矿物岩石地球化学通报,2003,22
 (2):174-178.
- [13] 常华进,储雪蕾,冯连君,等. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示[J]. 沉积学报,2010,28(6): 1098-1107.
- [14] 贵州省地质调查院.贵州省区域地质志[M].北京:地质出版社,2013.
- [15] 周正茂,李核良,赵志强,等.贵州1:5万谯家铺幅(H49E023002)、甘龙口幅(H49E023003)、合水幅(H49E024003)3幅区域地质调查报告[R].重庆:重庆市地质矿产勘查开发局607地质队,2018.
- [16] Yamamoto K. Geochemical characteristics and depositional environments of cherts and ssociated rocks in the Franciscan and Shimanto terranes[J]. Sedimentary Geology, 1987, 52:65 ~ 108.
- [17] 朱炳光. 硅质岩成因研究进展[J]. 中国西部科技,2011,10 (26):10-11,36.
- [18] Murray R W. Chemical criteria to identify the depositional environment ofchert: General principles and applications [J]. Sedimentary Geology, 1994, 90(3/4):213-232.
- [19] Girt G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California [J]. Journal of Sedimentary Research, 1996, 66(1): 107-118.
- [20] 张聪,黄虎,侯明才. 地球化学方法在硅质岩成因与构造背景 研究中的进展及问题[J]. 成都理工大学学报(自然科学 版),2017,44(3):293-304.
- [21] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111 (1 - 4): 111 -129.

- [22] 赵志强,凌云,李核良,等. 重庆秀山小茶园大塘坡组含锰岩 系地球化学特征分析及意义[J]. 矿物岩石地球化学通报, 2019,38(2):330-341.
- [23] 谢桂青,胡瑞忠,方维萱,漆亮.云南墨江金矿床硅质岩沉积
 环境的地球化学探讨[J].地球化学,2001,30(5):491
 -496.
- [24] Crowley T J, Berner R A. Palaeoclimate: CO₂ and climate change[J]. Science, 2001, 292(5518): 870 – 872.
- [25] 毛晓东,汪啸风,陈孝红. 扬子地台东南缘震旦纪—早寒武世 沉积环境及有关矿产[J]. 华南地质与矿产,1998,2:24 -31.

Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach

ZHAO Zhiqiang¹, HE Tongjun¹, SUN Xiaohao², CAI Keke¹, FAN Jie¹, WANG Shiwei³

 No. 607 Geological Prospecting Party, Chongqing Bureau of Geology and Mineral Resources, Chongqing, 400054, China;
 Chengdu University of Technology, Chengdu 610059, Sichuan, China;
 Pengshui Bureau of Planning and Natural Resources, Pengshui 409600, Chongqing, China)

Abstract: The sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou are classified, according to lithological associations and geochemical signatures, into the platform-margin to the platform basin sedimentary environments. The siliceous deposits are primarily derived from the terrigenous clastic deposits rather than the hydrothermal deposits. Geochemically, the V/(V + Ni) ratios suggest the euxinic environment for the formation of the siliceous rocks from the Laobao Formation. The Al/ (Al + Fe + Mn) ratios and Al-Fe-Mn triangular diagram indicate that the terrigenous clastics have play an important part in the formation of the siliceous rocks. The Al₂O₃/(Al₂O₃ + Fe₂O₃) ratios and Al₂O₃/(Al₂O₃ + Fe₂O₃) versus Fe₂O₃/TiO₂ diagrams indicate the continental marginal environment for the tectonic setting of the siliceous rocks from the Laobao Formation. The δ Ce values and (La/Ce)_N values also show that the siliceous rocks from the Laobao Formation were formed in the sedimentary environments intermediate between the open basin and continental marginal environments.

Key words: siliceous rock; geochemistry; sedimentary environment; origin