文章编号:1009-3850(2016)04-0106-05

"煤铀兼探"找矿新思路在云南的初次应用 ——以滇西户撒盆地铀矿勘探为例

李晋文³,陈 兵⁴,孔 然⁴

(1. 中国地质调查局成都地质调查中心,四川 成都 610081; 2. 中国地质科学院,北京100037; 3. 云南省煤炭地质勘查院,云南 昆明 650032; 4. 云南省核工业二〇九地质大队,

云南 昆明 650218)

摘要:通过对滇西户撒盆地煤田资料二次开发利用,文章首次提出"潜在储铀层"的概念,即煤田等勘探钻孔测井资料中自然伽马值显示高于 50γ(或3.5PA/kg或150API或12.6纳库(n•C)/Kg•小时)时所对应的砂岩、砾岩层,并筛查出主要赋存在新近系芒棒组一至三段的潜在储铀层40层。自然伽马异常等厚图与等值线图指示盆地北东部姐来-小寨地区、中部曼统-曼燕地区、南西部帕董-老汪寨地区可作为首选钻探验证靶区,验证孔当优先部署在以上区域。芒棒组一、二段因赋存的潜在储铀层数量多、伽马异常厚度较大、伽马异常值高,赋矿潜力大,可作为重点验证层位。

关 键 词: 煤铀兼探; 砂岩型铀矿; 潜在储铀层; 户撒盆地; 滇西中图分类号: P619.14文献标识码: A

"煤铀兼探"是指根据区域矿产分布规律,进行 勘查技术优化组合,在开展煤炭勘查的同时,利用 煤炭钻孔同步进行放射性测井和编录,探索砂岩型 铀矿存在的可能性^[1]。该重要战略思路是2007~ 2012年由中央地勘基金在组织鄂尔多斯盆地6个 勘查区进行煤炭资源"联片勘查"的施工过程中逐 步形成的。2012年,国内最大规模的可地浸砂岩型 铀矿一内蒙古中部大营铀矿这一重大战略成果的 获得,彰显出"煤铀兼探"新型找矿思路的科学合理 性。也同时拉开了全面推进北方乃至全国以煤炭 资料二次开发为核心来进行砂岩型铀矿找矿的 序幕。

2012 年以来,该新思路在指导北方中新生代盆

地找矿方面已获得初步成效^[2],而作为西南主要砂 岩型铀矿产地的云南地区还未开展过"煤铀兼探" 工作。2014年,中国地质调查局成都地质调查中心 启动《西南地区铀矿地质调查与选区》工作项目,初 次应用"煤铀兼探"找矿新思路在云南地区进行铀 矿调查选区,实现了对云南地区煤田钻孔资料的二 次开发。首先优选出腾冲、临沧、建水-个旧3个铀 富集(异常)区,再优中选优圈定出滇西户撒盆地为 首个砂岩型铀矿勘查区。本文详细报道了户撒盆 地铀矿勘探的最新成果与认识,并通过统计分析研 究 圈定了盆地砂岩型铀矿钻探验证靶区,确定了 重点验证层位。本文成果无论在指导后期钻井井 位部署以高效实现找矿突破的找矿实践上,还是在

收稿日期: 2016-03-08; 改回日期: 2016-05-23

作者简介: 伍皓(1984 -) 男, 工程师, 主要从事沉积学与岩相古地理学等研究。E-mail: wuhaocgs@ sohu. com

资助项目:中国地质调查局项目(12120114023601)与(12120115013001)资助

丰富和完善"煤铀兼探"找矿新思路及相关铀矿找 矿方法的理论研究上均具有重要意义。

1 区域地质背景

滇西发育大量新生代盆地,面积大于100 km² 的盆地有9个,其中蕴藏着丰富的铀资源,现已探明 8个中、小型砂岩型铀矿床,控制储量数千吨,是西 南地区提交铀资源最多的区域,也是我国重要的砂 岩型铀矿成矿带之一^[3-5]。户撒盆地处于该成矿带 内,位于陇川县城西北,距陇川县城56km,距盈江县 城59km,地理坐标为E97°45′-E97°58′;N24°24′-N 24°31′。长22km,平均宽约3km,面积约60km²。盆 地为一北东一南西向展布的狭长形山间盆地,北宽 南窄。区内构造呈北东一南西向,盆地的形成和发 展受基底断层(殿厂-平山断层)控制,其长轴方向 与区域构造线基本一致,为一强活动性断陷侵蚀盆 地^{①(}图1)。

盆地基底主要为燕山期混合花岗岩(γm) 岩性 为浅灰-灰色花岗岩、花岗斑岩、黑云母二长花岗岩 等,少量为新元古界高黎贡山群(Pt₃Gl) 灰色、浅灰 色片岩、片麻岩等。盖层由新近系芒棒组(N₂m) 及 第四系(Q) 组成(图1)。新近系芒棒组是滇西主 要赋矿层位,北部腾冲县芒棒乡城子山层型剖面主 要为一套碎屑岩,夹基性火山岩和薄煤层组成的由 粗到细的多个旋回,中部为玄武岩,厚19~450m^[6], 而户撒盆地芒棒组不含火山岩。根据颜色、岩性、 岩相、物性、化石、结核及含煤性特征,可以划分为5 个段^①:

第一段: 灰绿、紫红、褐黄等杂色砂砾岩,局部 为粗砂岩,砾石分选及磨圆差,成分主要为花岗岩、 片麻岩等碎屑。顶部一般有一套粉砂岩、细砂岩和 薄煤1层。一般厚20~50m,平均厚42.03m,属冲 洪积相。

第二段: 深灰、灰褐、灰黑色粉砂岩、细砂岩为 主,夹砂砾岩、炭质泥岩及含炭泥岩等,含褐煤层0 ~10 层。一般厚 50 ~ 75m,平均厚 59.28m。本段 以其富含炭、颜色深、煤层密集、含较多植物化石碎 屑为特征。

第三段: 灰色、灰绿色粉砂岩、细砂岩为主,夹 泥质粉砂岩、砂质泥岩、砂砾岩、炭质泥岩和含炭泥 岩,含薄煤层及透镜体0~10层。一般厚110~ 130m,平均119.06m。含少量植物化石碎屑及水生 节肢动物化石,与二段同属河漫-河床相。

第四段:灰色、浅灰色、土黄色泥岩、砂质泥岩、 泥质粉砂岩为主,夹细砂岩、粉砂岩,含蓝铁矿斑 块。一般厚60~80m。本段以其颜色浅、粒度细、不 含煤、含兰铁矿斑块及动植物化石为特征属湖泊相。

第五段:灰色砂质泥岩、泥质粉砂岩、粉砂岩为 主,夹细砂岩、砂砾岩、炭质泥岩和含炭泥岩,含不 稳定薄煤1~2层。厚度大于160.51m 属湖沼相。

Fig. 1 Simplified geological map of the Husa Basin in western Yunnan

"煤铀兼探"工作方法主要是以煤田等钻孔测 井自然伽马曲线异常筛查为主线,进行铀矿地质勘 查选区研究。一般而言,自然伽马测井曲线伽马异 常的幅值反映了岩层放射性射线照射强度,即伽马 射线多少,在一定程度上反应铀的含量。研究证 明,测井曲线自然伽马的幅值与岩石化学分析确定 的铀含量成正相关关系,即自然伽马异常越大,铀 的含量越高。利用煤田自然伽马测井伽马异常,可 以寻找砂岩型铀矿。测井曲线中若存在违反自然 伽马幅值与沉积岩颗粒大小成反比规律的岩层段, 也许正是砂岩型铀矿存在的标志^[7]。因此,按何种 标准来对该特殊岩层段进行识别和厘定显得至关 重要。

2.1 "潜在储铀层"的定义

本文将上述特殊岩层段定义为"潜在储铀层", 特指煤田等勘探钻孔测井资料中自然伽马值显示 高于 50γ(或3.5PA/kg或150API或12.6纳库(n・ C)/kg・小时)时所对应的砂岩、砾岩层。2012年, 中国地质调查局天津地质调查中心负责实施的《我 国主要盆地煤铀等多矿种地质调查》计划项目,首 次运用"煤铀兼探"思路在北方中新生代盆地中进 行铀矿调查选区研究,并在工作技术要求中明确了 煤田钻孔放射性测井自然 γ 异常的划分标准³。本 文在其划分标准基础之上,将原本用于煤田异常钻 孔划分的标准,改为应用于异常地层层段的划分, 创新性地提出"潜在储铀层"的概念。值得说明的 是,"潜在储铀层"的划分标准(50γ)并没有考虑国 内各地区各类型盆地的基底背景值,如果背景值 高,"潜在储铀层"的划分标准也应相应提高。因 此,"潜在储铀层"的划分标准仍有待在实际工作中 做进一步调整完善。

2.2 盆地潜在储铀层的厘定

1981 年1 月至 1982 年6 月,云南一九九煤田地 质勘探队对户撒盆地向董煤矿进行了煤田地质普 查勘探工作,在盆地施工钻孔 37 个,总进尺 6367.42m,最大孔深 393.02m。其中36 个钻孔中进 行了测井工作,共完成实测 5856m,占钻探总进尺的 92%。36 个测井钻孔中,通过筛查发现含潜在储铀 层钻孔 23 口,占总孔数的 63.9%,其中有 10 口钻 孔中含多层潜在储铀层(图 2 井 45)。23 口钻孔中 统计出潜在铀矿层 40 层,主要赋存在芒棒组一至三 段。其中一段含 16 层,占 40%;二段含 14 层,占 35%;三段含 10 层,占 25%。潜在储铀层岩性主要 为砂砾岩、含砾粗砂岩、粗砂岩、细砂岩、含炭细砂岩、

图 2 户撒盆地潜在储铀层测井曲线特征

Fig. 2 Well logs for the potential uranium reservoirs in the Husa Basin

粉砂岩、泥质粉砂岩,多以粗碎屑砂砾岩为主。自 然伽马曲线为单峰状,伽马值最小为51γ,最大为 345γ,大于100γ者多集中在芒棒组一段。层厚最 薄为0.6m,最厚为5m。埋深最浅为17~19m,最深 为382.4~384m。

3 潜在储铀层的应用

煤铀兼探工作在完成煤田资料筛查的基础之 上,下一步工作需要紧邻典型煤田钻孔部署新的钻 孔,以对前期煤田资料进行验证,检验资料的可靠 性及探讨砂岩型铀矿存在的可能性。前期针对潜 在储铀层开展系统的放射性特征统计分析,首先圈 定钻探验证靶区,并确定重点验证层位,将更利于 验证孔井位的优化部署。

3.1 钻探验证靶区

户撒盆地伽马异常等厚线图(图 3a)显示,盆地 北东部姐来-小寨地区、中部曼统-曼燕-芒景地区、 南西部来富-老汪寨地区异常厚度较大,多大于 3m, 局部大于 6m,显示较好的找矿潜力。另一方面,盆 地伽马异常等值线图(图 3b)显示,盆地北东部姐 来-小寨地区、曼棍-张坡头地区,中部曼统-曼燕地 区、南西部帕董-老汪寨地区伽马异常值高,多大于 100γ,局部大于 150γ。综合两图分析,盆地北东部 姐来-小寨地区,中部曼统-曼燕地区、南西部帕董-老汪寨地区不仅伽马异常厚度大,且伽马异常值 高,可作为首选钻探验证靶区,验证钻孔应在以上 区域进行优先部署。

图 3 户撒盆地伽马异常等厚线图 厚度为单井潜在储铀层累积厚度(a) 与等值线图 伽马值为单井潜在储铀层最大值(b) Fig. 3 Isopach map (a) and isoline (b) showing natural gamma-ray (γ) anomalies in the Husa Basin

3.2 重点验证层位

本次研究筛查的 40 层潜在储铀层中,有 16 层 赋存于芒棒组一段中,自然伽马平均值为 102γ,平 均厚度为 1.9m; 14 层赋存于芒棒组二段中,自然伽 马平均值为 116γ,平均厚度为 2.0m; 10 层赋存于芒 棒组三段中,自然伽马平均值为86γ,平均厚度为 2.6m(表1)。对比分析可以看出,芒棒组一、二段 中潜在储铀层赋存多(共30层,占75%),自然伽马 平均值高(均大于100γ)厚度较大,赋矿潜力大,应 为盆地重点验证层位,其次为芒棒组第三段。

```
表1 芒棒组1段~三段各潜在储铀层放射性特征统计表
```

Table 1Statistics of the radioactive anomalies in the potential uranium reservoirs from the first to third members of the
Neogene Mangbang Formation

层位	潜在储铀层 数量(层)	伽马异常值 范围(γ)	伽马异常 平均值(γ)	伽马异常 厚度范围(m)	伽马异常 平均厚度(m)	埋深范围 (m)
芒棒组一段	16	51 ~ 177	102	1.1 ~3.5	1.9	21 ~ 297
芒棒组二段	14	54 ~ 345	116	0.5~4.0	2.0	33 ~ 213
芒棒组三段	10	61 ~ 112	86	0.6~4.2	2.6	17 ~ 384

4 结论

(1)通过对滇西户撒盆地煤田资料二次利用, 首次提出"潜在储铀层"的概念,即煤田等勘探钻孔 测井资料中自然伽马值显示高于 50γ(或 3.5PA/kg 或 150API 或 12.6 纳库(n・C)/kg・小时)时所对 应的砂岩、砾岩层。盆地 36 口井的煤田测井资料 中,有 23 口井中钻遇有潜在储铀层。其中 10 口井 中含多层潜在储铀层 23 口钻孔中统计出潜在铀矿 层 40 层,主要赋存在芒棒组一至三段,多以粗碎屑 砂砾岩为主。

(2)针对潜在储铀层进行统计学分析,对指导 户撒盆地验证孔的部署有很好的应用价值,清晰指 示出下一步钻探验证靶区与重点验证层位。自然 伽马异常等厚图与等值线图指示盆地北东部姐来-小寨地区,中部曼统-曼燕地区、南西部帕董-老汪寨 地区不仅伽马异常厚度大,且伽马异常值高,可作 为首选钻探验证靶区,验证钻孔应在以上区域进行 优先部署。芒棒组一、二段因赋存的潜在储铀层数 量多、层厚较大、伽马异常值高,赋矿潜力较大,可 作为重点验证层位,其次为芒棒组三段。

注释:

一 云南一九九煤田地质勘探队. 陇川县户撒盆地向董煤矿普查报告. 1983.

② 云南煤田地质局. 云南晚第三纪盆地成因类型与聚煤规
 律. 1994.

③ 中国地质调查局天津地质调查中心. 我国主要盆地煤铀等多矿 种综合调查评价计划项目工作技术要求. 2014.

参考文献:

- [1] 科技日报."煤铀兼探"找矿新思路的创举——我国发现国内 最大的世界级铀矿[R].科技传播 2012 22:211.
- [2] 冯晓曦 汤超."全国砂岩型铀矿远景调查工作部署研讨会"
 报道[R].地质调查与研究 2013 36(3):239-240.
- [3] 孙泽轩 陈洪德 ,朱西养 ,等. 滇西新生代盆地砂岩型铀矿勘 查现状与找矿前景[J]. 四川地质学报 2006 26(1):24-29.
- [4] 孙泽轩,陈洪德,吴英,等. 滇西新生代盆地与砂岩型铀矿成 矿[J]. 地质论评 2006 52(4):494 – 500.
- [5] 孙泽轩 陈洪德 ,朱西养 ,等. 滇西新生代盆山耦合与砂岩型 铀矿找矿方向[J]. 铀矿地质 2007 23(5):289-297.
- [6] 云南省地质矿产局.云南省岩石地层[M].武汉:中国地质大 学出版社,1996.221-222.
- [7] 李宝华. 煤田测井在砂岩型铀矿勘查选区中的应用[J]. 中国 煤炭地质 2014 26(9):81-84.

Coal-uranium exploration in the Husa Basin, western Yunnan: A new approach

WU Hao¹, JIANG Xin-sheng¹, YU Qian¹, ZHOU Ken-ken¹, CHEN Xiao-wei¹, ZHANG Jianjun^{1,2}, TU Yun-kuan³, LI Jin-wen³, CHEN Bing⁴, KONG Ran⁴

(1. Chengdu Center, China Geological Survey, Chengdu 610081, Sichuan, China; 2. Chinese Academy of Geological Sciences, Beijing 100037, China; 3. Yunnan Research Institute of Coal Geology, Kunming 650032, Yunnan, China; 4. No. 209 Geological Party, Yunnan Bureau of Nuclear Geology, Kunming 650218, Yunnan, China)

Abstract: With the aid of the coalfield data from the Husa Basin , western Yunnan , the concept "potential uranium reservoirs" is proposed for the first time in the present paper , and referred to as the sandstone or conglomerate horizons whose natural gamma-ray values are greater than 50γ (or 3. 5 PA/kg or 150API or 12. 6 (n. C) /kg. hour). Up to now ,40 layers of potential uranium reservoirs have been delineated in the first to third members of the Neogene Mangbang Formation , As indicated by the isopach map and isoline map showing natural gamma-ray (γ) anomalies , the Jielai-Xiaozhai zone in the northeastern part , the Mantong-Manyan zone in the central part , and the Padong-Laowangzhai zone in the southwestern part of the Husa Basin may be selected as the preferred targets for future drilling , and the first and second members of the Mangbang Formation may be selected as the key horizons for future drilling because of large numbers of the potential uranium-bearing beds , greater thickness and higher values of the natural gamma-ray (γ) anomalies in the potential uranium reservoirs in the Husa Basin.

Key words: coal-uranium exploration; sandstone-type uranium deposit; potential uranium reservoirs; Husa Basin; western Yunnan