文章编号:1009-3850(2015)03-0102-07

老挝爬立山铁矿二长花岗斑岩地球化学特征 及其成矿意义

高建华,范文玉,吴振波,王 宏

(中国地质调查局成都地质调查中心,四川 成都 610081)

摘要:老挝爬立山铁矿位于长山褶皱带北西端,为一个大型砂卡岩型铁矿床。铁矿化产于二长花岗斑岩的内、外接触带。二长花岗斑岩具有富碱,硅、铝过饱和的特征,属钙碱性岩。微量元素配分模式与正常大陆弧花岗岩类似,稀 土配分模式为右倾轻稀土富集型,正铕异常,轻重稀土分馏明显,属下地壳重熔被动侵位形成的"S"型花岗岩。岩体 U-Pb 年龄为 283 ± 2.9Ma,侵位时间为早二叠世。爬立山铁矿床潜在资源量巨大,外围地区具有相同类型铁矿床的 找矿远景。

关键 词:爬立山铁矿;二长花岗斑岩;砂卡岩型;老挝
 中图分类号:P594.⁺1
 文献标识码:A

引言

爬立山(PhuPhaLek)铁矿区位于老挝长山褶皱带(Truongson fold belt)北西端^[1],行政区划隶属于万象省赛宋文县,中心坐标:E 102°56′30″;N 18°59′30″。2011年,成都地质调查中心对爬立山铁矿区 D 矿段进行勘探,探获铁矿资源量 4800 多万吨。

老挝长山褶皱带呈北西向展布,北起兰江,南 界约在越南岘港至老挝车邦一线。带内发育大量 华力西期-印支期花岗岩类,是老挝境内最主要的铁 铜金锡成矿带。成矿作用主要与华力西-印支期花 岗岩类(含次火山岩)有关,已知大型矿床有越南石 溪砂卡岩型铁矿床、老挝富诺安(PhouNhuan)砂卡 岩型铁矿床、塞奔(Sepon)斑岩型铜金矿床、富开 (Phu Kham)斑岩型铜金矿床及福康(Phoukham)、 纳萨特(Nasat)、纳努(Nanou)等大型砂卡岩型铁 矿床^[1-5]。

本文通过主、微量元素地球化学特征及形成时

代对爬立山铁矿成矿二长花岗斑岩的岩石成因、构造环境进行讨论,并结合区域构造成矿特征对其成 矿意义进行探讨,以期为老挝长山带基础地质研究 及区域找矿提供支撑。

1 成矿地质背景

老挝爬立山铁矿大地构造位置位于南海-印支 地块的北部(图1),长山褶皱带的北西端。长山褶 皱带沿老挝-越南长山山脉展布,发育元古宙 – 早寒 武世变质杂岩体,构成陆块结晶基底。早 – 中古生 代发育高铝、硅、钠的花岗岩,形成具硅铝质特征的 大陆壳;晚古生代,该区先后经历了马江洋的南西 向俯冲、大洋闭合,印支-华南陆块间的汇聚碰撞及 随后的长山带构造-变质变形事件,从而形成长山褶 皱带^[1,68]。长山褶皱带由巨厚的地槽相砂泥质建 造组成。由浅变质的龙带河群和大江群与沉积间 断面之上的中石炭世 – 二叠纪碳酸盐岩建造、白垩 纪陆相岩层组成。构造形态上,中奥陶统至泥盆系

收稿日期: 2015-04-22; 改回日期: 2015-06-29

作者简介:高建华(1980-),男,工程师,从事矿床勘查及成矿规律研究。E-mail:21394450@qq.com

资助项目:海上丝绸之路经济带境外矿产资源潜力评价项目(编号12120114018701)、老挝沙耶武里及邻区优势矿产资源潜力调查与分析

地层强烈褶皱成线状构造,其上覆盖着产状近于水 平的中石炭统至二叠系灰岩,故认为是属于华力西 期构造运动之产物。区内岩浆岩有中奥陶世花岗 岩侵入体及侵入于下古生界和泥盆系的大型花岗 岩基,时代可能为华力西期^[1]。

Fig. 1 Schematic geological map of the PhuPhaLek iron deposit in Laos (modified from Zhu Huaping et al., 2014)

2 矿区地质特征

爬立山矿区发育古生代地层,主要由志留系和 中上泥盆统组成。志留系为一套砂板岩、泥质粉砂 岩夹砂岩;中上泥盆统主要岩性组合为一套石灰 岩、泥灰岩、砂岩、页岩及基性火山岩等,互层产出。 在 D 矿段南西为薄层灰岩、泥灰岩、砂泥质岩石互 层。北东以厚层灰岩、泥灰岩和白云质灰岩为主。 其间过渡地段为砂泥质岩、基性火山岩和中-厚层灰 岩互层,是磁铁矿赋矿围岩的下部层位。

矿区内岩浆侵入活动强烈,岩体主要为二长花 岗斑岩,局部见花岗岩、蚀变基性岩脉产出。岩体 主要侵入于泥盆系泥灰岩、灰岩中的火山碎屑岩 中,以侵入接触关系为主,局部为断层接触。爬立 山矿区内的构造较为复杂,上覆泥盆系岩石多发育 一系列北西向展布的陡倾状背向斜构造,其构成成 矿期前的主要构造样式,并使岩浆侵位接触交代形 成砂卡岩型矿床成为可能。区内发育东西向断裂 构造,其与成矿作用关系不明显,为成矿期后的隆 升作用过程中形成的破矿构造。

爬立山矿区原生矿床成因类型为典型的矽卡 岩型,矿体呈似层状或透镜状产于岩体接触带上, 后经强烈改造,形成了现在以磁铁矿-赤铁矿型为主 的风化表生型砂土状铁矿床。矿石品位较富,目前 已控制 D2、D3、D4 3 个矿体群,矿石平均品位 TFe 47.01%。

3 二长花岗斑岩特征

3.1 样品采集与分析

样品全部采自爬立山矿区 D 矿段中部的二长 花岗斑岩体,采样过程中注意避开岩石变质程度较 高的地带。岩石样品的主量元素在国土资源部西 南矿产资源监督检测中心完成,稀土、微量元素在 国家地质测试中心完成。主量元素用 X 射线荧光 光谱(XRF)法分析完成,误差小于 2.5%。FeO 用 湿化学法单独测定,微量元素和稀土元素采用 ICP- MS法分析测定,分析精度优于5%。

岩体的产出形态主要呈不规则的岩株状,出露 面积约为 16km²。岩体的剥蚀深度为浅剥蚀-剥蚀 中等,其呈未封闭环状包绕泥盆系碎屑岩-碳酸盐岩 石系列,在深部构成岩浆岩凹形基底,从而与上覆 碎屑岩-碳酸盐岩石系列间呈面状接触而产生面积 较大的接触交代,为形成较大规模矿体创造了条件。 3.2 岩石学特征

二长花岗斑岩为灰白色,中细粒斑状结构,块 状构造。岩石斑晶含量在60%左右,中至细粒,以 中粒不等粒半自形至不规则粒状为主,主要由斜长 石(>30%)、钾长石(>10%)、石英(<10%)和少 量黑云母(2%~3%)组成。斜长石为中至细粒半 自形板状,无序散布。钾长石呈中细粒不规则板状 或粒状,分布无规律,具轻微泥化,无双晶。石英为 中细粒不等粒不规则粒状或粒状集合体无序散布, 穿插于两种长石粒间,局部包裹斜长石。常见钾长 石以不规则相互包嵌共生为主,局部石英呈花斑状 结构与基质过渡。黑云母呈细粒不规则片状或由 少许颗粒组成的不规则集合体,主要穿插于斜长石 粒间,局部包于钾长石中,分布无序。基质含量 < 40%,主要由钾长石和石英组成,交生结构,无序散 布充填于上述矿物粒间,局部包绕石英及钾长石, 分布较普遍而无规律。

3.3 岩石地球化学特征

3.3.1 常量元素

爬立山二长花岗斑岩的岩石化学成分及有关 岩石化学指数见表 1。岩体中 SiO₂含量为 70.58% ~72.77%(平均 71.96%),高于世界花岗岩的 SiO₂ 平均值(71.30%)^[10], Al₂O₃含量 13.51% ~ 15.10%,值高且变化小;A/CNK 为 1.12 ~ 1.20,大 于 1.1,属硅、铝过饱和;K₂O含量 3.59% ~ 4.52% (平均 3.97%);N₂O含量 3.57% ~ 3.74%(平均 3.67%),K₂O > Na₂O,富碱。在 TAS 分类图解(图 2)上,样品均投影于花岗岩中,显示出花岗岩特征。

岩石里特曼指数(δ)1.88~2.37,小于3.3,属 于钙碱性岩石系列,又称为正常太平洋型,在K₂O-SiO₂图解中,岩石显示出高钾钙碱性系列特征(图 3)。二长花岗斑岩岩石分异指数(DI)为86.27~ 89.56,平均为87.70,大于80,固结指数(SI)为6.11 ~8.48,平均7.43,表明岩石的酸性程度及岩浆分 异程度均高,岩浆分异作用比较彻底,有利于形成 工业矿体。岩石氧化率(OX)一般为0.55~0.57, 具有较高的氧化系数,反映了岩石成岩部位较浅、 氧分压高的特点。

CIPW 标准矿物计算结果表明,矿物组合以石

氧化物含量(%) 样号 δ DI SI A/CNK OX SiO_2 TiO₂ Al₂O₃ Fe₂O₃ FeOMnO MgO CaO Na₂O K₂O $P_{2}O_{5}$ 烧失量 Σ D31-01 72.8 0.31 1.34 0.03 0.79 3.74 1.17 13.5 1.35 0.8 3.74 0.05 1.3 94.6 1.88 88.5 7.29 0.56 D31-02 72.3 0.31 13.6 1.17 1.54 0.04 0.93 1.12 3.74 3.59 0.07 1.21 94.8 1.83 86.8 8.48 1.14 0.57 1.29 D31-03 1.32 94.7 1.92 1.12 71.9 0.32 14 1.41 0.05 0.82 3.68 3.76 0.06 1.2 86.3 7.46 0.56 93.7 15.1 D31-04 70.6 0.35 1.29 0.98 0.02 0.88 0.95 3.57 4.52 0.07 1.45 2.37 87.4 7.83 1.2 0.55 D31-05 72.2 0.33 13.8 2.1 0.8 0.03 0.7 0.5 3.63 4.22 0.05 1.4 94.1 2.11 89.6 6.11 1.19 0.55

表1 爬立山二长花岗斑岩常量元素分析表

Table 1 Major element analyses for the monzonite granite porphyry in the PhuPhaLek iron deposit, Laos

注:样品测试由国土资源部西南矿产资源监督检测中心完成,测试时间:2010

英、正长石、钠长石、钙长石、紫苏辉石为主,含少量 刚玉、顽火辉石、铁辉石、磷辉石、磁铁矿。石英含 量为 29.02% ~33.43%,平均值 31.85%,岩石属 SiO₂过饱和系列。

3.3.2 微量元素

研究区二长花岗斑岩微量元素含量及特征值 见表2。与世界花岗岩的微量元素丰度值对比(维 氏,1962)^[10],爬立山岩体中 Ba、Hf、V、Co、Sc 明显 高于维氏值,其中 Hf 丰度值为(4.74~5.38) × 10⁶,是维氏值的4.74~5.38 倍,其余的微量元素丰 度值均低于维氏值。微量元素原始地幔配分模式 图(图4)表现为右倾的锯齿状,富集大离子亲石元 素 K、Rb、Ba,亏损高场强元素 Ta、Nb、P,极度亏损 Ti。Ta、Nb 的亏损指示其岩浆可能来源于地壳重 熔,或富 Ta、Nb 的矿物发生了分离结晶作用。P、Ti 明显亏损可能与磷灰石、钛铁氧化物的结晶分异作 用有关^[11]。与正常大陆弧花岗岩微量元素配分模 式类似,具有造山花岗岩特点,岩浆来源于上地壳。 3.3.3 稀土元素

爬立山岩体稀土元素含量、稀土配分类型及成因参数见表 2。稀土总量为(111.06~162.86)×10⁶,LREE/HREE 为 7.22~8.72,(La/Yb)_N为 7.67

图 2 爬立山岩体岩石分类命名图解

Fig. 3 K₂O vs. SiO₂ diagram for the monzonite granite porphyry in the PhuPhaLek iron deposit, Laos

表 2	爬立山二长花岗斑岩微量.	、稀土元素分析结果表(10 ⁻⁶)
-----	--------------	-------------	------------------	---

Table 2 Trace element and rare earth element contents in the monzonite granite porphyry in the PhuPhaLek iron deposit, Laos (10⁻⁶)

投口	原始数据																	
件写	Rb	Sr	Ba	Ga	Nb	Та	Zr	Hf	Th	V	Cr	Co	Ni	Sc	U	Ti	La	Ce
D31-01	96.6	126	745	15.6	6.55	0.65	150	4.74	16.4	38.2	5.00	5.07	4.20	6. 19	2.55	2624	25.7	45.6
D31-02	100	183	799	17.2	6.64	0.68	153	5.17	18.0	45.4	6.74	5.84	5.49	8.32	3.62	2726	39.2	65.6
D31-03	90. 9	215	828	17.6	6.60	0.64	166	4. 99	17.0	32.8	5.48	5.15	8.27	5.44	2.95	1997	34.5	61.0
D31-04	136	113	927	20.9	7.59	0.67	189	5.38	17.5	53.9	4. 57	3.89	3.99	7.48	3.34	3003	31.4	54.8
D31-05	105	156	927	17.8	8.10	0.81	158	5.18	19.3	32.8	4.90	5.60	6.11	7.48	3.19	2223	34.7	59.0
样号	原始数据											稀土配分类型及成因参数						
	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y	Σ REE	LR/HR	δEu	(La/Yb) _N	(Ce/Yb) _N
D31-01	5.12	17.8	3.33	1.37	3.82	0.45	2.91	0.60	1.56	0.38	2.09	0.32	15.5	111.06	8.15	1.17	8.81	5.64
D31-02	7.36	26.7	4.67	1.57	5.43	0.70	4.31	0.92	2.32	0. 57	3.01	0.46	23.9	162.86	8.2	0.95	9.34	5.64
D31-03	7.19	27.3	5.05	1.73	5.44	0.74	5.04	0. 99	2.43	0. 59	3.23	0. 49	26.5	155.77	7.22	1	7.67	4.89
D31-04	6.10	19.6	3.51	1.64	4.05	0.50	3.32	0.67	1.72	0.43	2.37	0.37	17.2	130. 42	8.72	1.33	9.51	5.98
D31-05	6.78	23.8	4.23	1.77	4.64	0.60	3.94	0.84	2.12	0.52	2.77	0.42	21.4	146.11	8.21	1.21	8.98	5.49

注:样品测试由国家地质测试中心完成,测试时间:2010

~9.51, (Ce/Yb)_N为4.89~5.98, δEu为0.95~ 1.33,平均1.13,大于1,Eu显示较弱的正异常,轻 重稀土分馏明显,分馏程度均较高。稀土元素球粒 陨石标准化模式图(图5)表现为具有右倾状的 LREE 富集模式。

讨论 4

4.1 岩石成因

爬立山二长花岗斑岩微量元素 W(Nb)平均为 7.09×10⁻⁶,小于12×10⁻⁶,W(Ta)≤0.81×10⁻⁶;Nb/ La ≤ 0. 255, Ti/Y 平均为 127. 5, 小于 350; Hf/Th 平 均为 0.289, 小于 8; Th/Yb > 0.1, Th/Nb > 0.07, 显 示了造山带的地球化学特征。二长花岗斑岩具有 高硅、富碱的特征,在ACF三角图解中(图6),各点 悉数落在"S"型花岗岩即壳源型花岗岩投影区,表 明岩浆物源来自上地壳,属S型花岗岩。

4.2 构造环境

爬立山二长花岗斑岩富集大离子亲石元素,亏 损高场强元素,显示出岛弧岩浆作用特征。二长花 岗斑岩样品在构造判别图(图7)中位于火山弧花岗 岩区域,指示其形成 于火山弧的构造环境。长山褶 皱带在构造形态上,被认为是华力西期构造运动的

Fig. 4 PM-normalized trace element distribution patterns for the monzonite granite porphyry in the PhuPhaLek iron deposit, Laos

微量元素原始地幔配分模式图

Ta Nb La Ce Sr Nd P

Zr Hf Sm

Ti

Yh Lu

I. "I"型花岗岩, S. "S"型花岗岩

产物,区内侵入下古生界和泥盆系大型花岗岩基的 时代可能亦为华力西期(海西期)^[1]。最新数据显 示,爬立山二长花岗岩体的 SHRIMP U-Pb 同位素年 龄为 283 ± 2.9Ma^[12]。结合前人研究及地质背景分 析,爬立山二长花岗斑岩形成于晚石炭世华南地块 向印支地块俯冲产生的火山岛弧环境^[13]。

4.3 成矿意义

在爬立山二长花岗斑岩岩体含矿性判别图(图 8)中,各样品均落入含矿岩体一侧,说明爬立山二 长花岗斑岩是含矿岩体,提供了成矿物源。在与泥 盆纪碳酸盐岩、钙质碎屑岩地层侵入接触过程中, 产生砂卡岩化,并生成透镜状、似层状砂卡岩型磁铁

ORG. 洋脊花岗岩;WPG. 板内花岗岩;VAG. 火山弧花岗岩;syn-COLG. 同碰撞花岗岩 Fig. 7 Tectonic discrimination plots for the monzonite granite porphyry in the PhuPhaLek iron deposit, Laos

1000

样品/原始地幔

1000

样品/球粒陨石 00

10

x D31-01
 o D31-02
 □ D31-03
 ★ D31-04
 10- △ D31-05

Rb Ba Th U

图 4

D31-01

♦ D31-02

O D31-04
 ▲ D31-05

K

图 8 爬立山岩体含矿性判别图解

Fig. 8 Plot showing the ore-bearing potential of the monzonite granite porphyry in the PhuPhaLek iron deposit, Laos

矿体。爬立山铁矿是长山褶皱带内典型的砂卡岩 型铁矿,与华力西期花岗岩侵入有关。区域上已知 的大型矿床,如爬立山南部 20km 处的富开大型斑 岩型铜-金矿床、赛奔大型斑岩型铜-金矿床、越南最 大的铁矿—河静石溪砂卡岩型铁矿床成矿均与华 力西期花岗岩侵入密切相关。因此,区域上的华力 西期花岗岩是寻找砂卡岩型、斑岩型矿床的突破 口。据赵红娟等的研究^[2],长山褶皱带北西部花岗 岩体大面积出露。目前,川圹东部地区由于工作程 度较高,已陆续发现数十个矿床(点)。而万象省东 北部除已知的爬立山铁矿和富开铜-金矿床外,找矿 方面还没有进展。在该处加大工作力度,就矿找 矿,极有可能发现类似的大型铁矿矿床或者铜金 矿床。

5 结论

对爬立山铁矿区二长花岗斑岩的岩石学、岩石 地球化学特征进行了研究,取得了以下认识:

(1)岩石属过铝质系列的高钾钙碱性花岗岩。

(2)岩体微量元素配分型式与正常大陆弧花岗 岩类似,具有造山花岗岩特点。稀土配分模式为右 倾轻稀土富集型,轻重稀土分馏明显。常量及微量 元素特征均反映岩浆物源来自上地壳,属 S 型花 岗岩。

(3)研究区二长花岗斑岩酸性程度及岩浆分异

程度均高,系岩浆演化后期形成,岩石化学成分特征有利于成矿。

(4) 岩体及矽卡岩型铁矿体形成于华力西期的 火山岛弧环境, 对区域找矿具有重要的指导意义。

致谢:在工作过程中得到了老挝鑫河钢铁矿业 发展有限公司夏志文、白涛的支持和帮助;一起工 作的还有成都地质调查中心刘增铁、邹光富、吴文 贤、焦彦杰、杨剑、邓柯等,在此一并表示感谢。

参考文献:

- [1] 卢映祥,刘洪光,黄静宇,等.东南亚中南半岛成矿带初步划分
 与区域成矿特征[J].地质通报,2009,28(2/3):314-325.
- [2] 赵红娟,陈永清,卢映祥.老挝长山成矿带与花岗岩有关的铜
 金铁矿床的成矿模式[J].地质通报,2011,30(10):1619
 -1627.
- [3] 吴良士.老挝人民民主共和国矿产资源及其地质特征[J].矿 床地质,2009,28(2):224-226.
- [4] 李景春,徐庆国,庞庆邦.老挝人民民主共和国地质矿产概况 [J].贵金属地质,2000,9(4):235-239.
- [5] 李方夏,赵应龙,王卓之,等.东南亚地质矿产与矿业经济[M].云南省地质矿产局、云南省计划委员会,1995.1~332.
- [6] SONE M, METCALFE I. Parallel Tethyan Sutures in Mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian Orogeny [J]. C R Geoscience, 2008,340(16):6-179.
- [7] WANG JIANGHAI, YIN AN, HARRISONT M, et al. A tectonic model for cenozoic igneous activities in the eastern Indo-Asian collison zone [J]. Earth Planet. Sci. Lett. ,2001,199:123 – 133.
- [8] LEPVRIER C, MALUSKI H, VAN VUONG N, et al. Indosinian N W-trending shear zones within the Truong Son Belt ⁴⁰Ar-³⁰ Ar Triassic Ages and Cretaceous to Cenozoic Overprints [J]. Tectonophysics, 1997, 283:105 - 127.
- [9] 朱华平,范文玉,毛洪江,等.老挝万象省爬立山(PHLek)铁矿 地质特征及成矿作用分析[J].吉林大学学报(地球科学版), 2014,44(5):1492-1501.
- [10] 邱家骧. 岩浆岩岩石学[M]. 北京:地质出版社, 1985. 316 - 317.
- [11] 唐文龙,付超,张苏江,等.内蒙古阿巴嘎旗乌和尔楚鲁图地 区二长花岗岩地球化学特征及地质意义[J].矿物岩石, 2013,33(3):103-109.
- [12] 王疆丽,林方成,朱华平,等.老挝万象省爬立山铁矿成矿二 长花岗岩锆石 SHRIMP U-Pb 定年及其地质意义[J]. 沉积与 特提斯地质,2013,33(3):87-93.
- [13] 张宏远,刘俊来.三江南段-中南半岛特提斯蛇绿岩大地构造 与成矿[J].地球科学,2011,36(2):262-276.

Geochemistry and mineralization of the monzonite granite-porphyry from the PhuPhaLek iron deposit, Laos

GAO Jian-hua, FAN Wen-yu, WU Zhen-bo, WANG Hong

(Chengdu Center, China Geological Survey, Chengdu 610081, Sichuan, China)

Abstract: The PhuPhaLek iron deposit, Laos in the northwestern part of the Truongson fold belt occurs as a largesized skarn-type iron deposit. The mineralization occurs within the inner-outer contact zone of monzonite granite porphyries. The monzonite granite porphyries have enriched alkali and oversaturated Si and Al, and are assigned to the calc-alkaline rocks. The trace element distribution patterns are similar to those of the normal continental arc granites. The rare earth element distribution patterns display right-leaning LREE-enriched patterns with positive Eu anomaly and marked fractionation of LREE and HREE, suggesting the "S"-type granites created by the remelting and intrusion of the lower crust melts. The SHRIMP U-Pb age of 283 ± 2.9 Ma indicates that the emplacement took place during the Early Permian.

Key words: PhuPhaLek iron deposit; monzonite granite porphyry; skarn-type; Laos