文章编号:1009-3850(2006)02-0081-07

四川康定城地质灾害危险性分区评价

魏伦武¹,王德伟²,丁俊¹,王永利²,倪师军²,

张成江2,毛 郁3, 鄢 毅3

 (1. 成都地质矿产研究所,四川 成都 610082; 2. 成都理工大学,四川 成都 610059; 3. 四 川省地质调查院,四川 成都 610081)

摘要: 以康定城为例, 提出了城市地质灾害危险性分区评价的新方法, 建立了地质灾害易发性和地质灾害社会经济 易损性评价因子指标体系与评价方法, 在地质灾害易发性和易损性评价基础上, 进行地质灾害危险性分区评价。其 危险性等级划分标准与国务院地质灾害防治条例和突发地质灾害应急预案函中的划分标准一致, 评价结果可直接 用于城市地质灾害防治规划编制工作, 为城市防灾减灾和实施地质灾害避让搬迁、监测报警和防治工程的实施提供 了科学依据。

关键词:康定;地质灾害;危险性;评价方法;四川中图分类号:P694文献标识码:A

1 地质灾害危险性评价思路

城市地质灾害危险性评价是建立在地质灾害易 发性与地质灾害的社会经济易损性基础上的,易发 性偏重于地质环境的自然属性,而易损性偏重于社 会属性。对一个地质灾害点而言,首先是易于发生 地质灾害,又会对社会造成一定损失(易损),即可认 定地质灾害具有很大的危险性。因此,危险性评价 是由易发性与易损性叠加而成,反映地质灾害危害 程度。

地质灾害危险性评价思路见图 1。易发性从 5 个方面分别予以评价,其中包括:崩塌、滑坡、泥石 流、塌陷和其他地质灾害的易发性评价;易损性评价 包括 4 个方面的内容:生命损失、财产损失、社会经 济损失和资源与环境损失。

Fig. 1 Risk assessment elements of geological hazards

收稿日期: 2006-01-22

资助项目: 中国地质调查局"西南地区主要城市环境地质调查及脆性评价综合研究"(1212010540102)。

2 地质灾害发育分布特征

四川省甘孜藏族自治州首府康定县城地处高 原,受高山峡谷地形地貌和断裂构造条件的控制,断 裂发育,岩体破碎,在降雨、地震和人类经济活动的 影响下,地质灾害十分发育^[1,2]。地质灾害类型有 滑坡、崩塌、泥石流、不稳定斜坡(危石群和变形体), 共计地质灾害 25 处,其中滑坡 14 处、崩塌 3 处、泥 石流 5 处、不稳定斜坡 3 处(包括危石群 1 处、堆积 层变形体 2 处)。地质灾害多沿城区河流两岸斜坡 和支沟分布,对人口稠密、商业繁华的城区居民的生 命财产安全构成巨大的威胁。

3 地质灾害易发分区评价

城市地质灾害易发性是指城市的地质结构体可 能发生地质灾害的程度;地质灾害易发区是指容易 产生地质灾害的区域,分为高易发区、中易发区、低 易发区和不易发区4种不同类型区域。

3.1 地质环境分区单元的划分

康定城地质环境分区是以地质图为基础,依据 地质环境条件和环境地质问题的差异性,按"区内相 似,区际相异"的原则,采用不规则单元法将康定城 划分为86个地质环境分区单元格(图2)。

3.2 地质灾害易发程度判别

根据崩塌、滑坡、泥石流等灾种的形成条件、诱 发因素以及稳定状态和发展趋势,建立不同灾种的 地质灾害易发程度的判别模式^[3]:

 $E_{j} = \frac{\sum_{i=1}^{m} a_{i} \circ x_{i}}{n}$ $E_{j} = ---- 第 j 类灾种地质灾害易发程度$

ai——j 灾种评价因子 xi 的权重

xi---j 灾种评价因子

m —— j 灾种评价因子总个数

n ───灾害修正系数, 滑坡 *n*=40, 崩塌 *n*=40, 泥石流 *n*=130

对康定城 86 个地质环境分区单元进行地质灾 害易发程度评判,做出城市地质灾害易发分区评价 图。康定城滑坡高易发单元 6个,中易发单元37个, 低和不易发单元29个;崩塌高易发单元 3个,中易发 单元 4个,低和不易发单元65个;泥石流高易发沟有 椒子杠(79号单元)、子耳坡(77号单元)和母猪笼(80 号单元)三条沟,泥石流中易发沟有白骨塔(78号单 元)和公主桥沟(81号单元)。

图 2 康定城地质环境分区单元格划分图(数字为单元 格编号)

Fig. 2 Division of unit grids for the urban geo-environments in Kangding county town (The numbers refer to the numbers of the unit grids)

3.3 地质灾害易发程度分区

根据康定城 86 个地质环境分区单元的地质灾 害易发程度判别结果,将各滑坡、崩塌、泥石流等灾 种的易发程度判别结果进行叠加,最后做出康定城 地质灾害易发分区评价图。

康定城易发区划分为四级:

- A级一地质灾害高易发区,其中:
- A1-滑坡高易发区
- A2-崩塌高易发区
- A₃一泥石流高易发区
- A4-滑坡、泥石流高易发区
- B级一地质灾害中易发区,其中:

B₁-滑坡中易发区

B₂一崩塌中易发区

B3-泥石流中易发区

C级一地质灾害低易发区

D 级一地质灾害不易发区

4 地质灾害社会经济易损性分区评价

易损性是指受灾体遭受地质灾害破坏机会的多 少与发生损毁的难易程度,表现为社会经济系统对 地质灾害的响应,是以受灾体对灾害活动的敏感程 度与承受能力来度量。城市地质灾害的社会易损性 可用易损性指数来度量,指数值越大社会经济易损 性越高。地质灾害易损性值可用下式计算:

$$Y_i = \frac{\sum_{j=1}^{4} a_i \circ x_{ij}}{x_{ij}}$$

 x_{i1} ——*i* 单元的人口密度(人/km²)

 x_{i2} ——*i* 单元的财产密度(万元/km²)

xi3-----i 单元的社会经济损失指标

x_{i4}—— *i* 单元的资源与环境损失指标

ai —— i 单元的损失率

在康定城地质灾害社会经济易损性评价因子 (人口密度、财产密度、社会经济损失、资源与环境损 失)值获得基础上,对易损性评价因子进行归1化处 理,并计算出易损程度 Y_损 和易损性指数 E_损 值⁴, 根据易损性指数的大小进行易损性分区:

<i>E</i> _损 ≥0.6	高易损区
0.4≤ <i>E</i> 损<0.6	中易损区
0.2≤を損≤0.4	低易损区
Е損≤0.2	不易损区

康定城 2020 年社会经济易损性指数分布特征: 高易损区主要分布在二道桥温泉、城北水泥厂、体育 馆、子耳坡沟、箭杆山、瓦斯河右岸、白土坎、驷马桥 等附近区域,这些地区处于地质灾害高易发及其可 能危害的范围区,具有人口财产密度大,受灾易损严 重之特点。中易损区主要分布在雅拉河两岸、瓦斯 河谷、老城区折多河两岸和龙头沟等区域,这些地区 处于地质灾害中一高易发及其可能危害的范围区, 具有人口财产密度较大,受灾易损较严重的特点。 低一不易损区分主要分布于新城区和河流两岸的山 坡上。

5 地质灾害危险性分区评价

地质灾害危险区是指明显可能发生地质灾害且

造成较多人员伤亡和严重财产损失的地区。从定性 分析看,地质灾害的活动程度越高,危险性越大,可 能造成的灾害损失越严重。地质灾害危险性分为已 发灾害危险性和潜在灾害危险性。已发灾害危险性 是指已经发生的地质灾害点的危险程度;潜在灾害 危险性是指具有灾害形成条件,但尚未发生的地质 灾害的可能的危险程度。地质灾害危险性分区评价 的工作流程见图 3。

5.1 地质灾害危险性指数计算

运用地理信息系统(GIS)平台,在易发性与易损 性评价基础上,叠加计算出每个地质环境分区单元 的地质灾害危险性指数:

 $W_{\text{fe}} = a_1 \circ E_{\text{se}} + a_2 \circ E_{\text{fe}}$

式中, W_危——评价单元的地质灾害危险性指数

*E*易——评价单元的地质灾害易发性指数

*E*损——评价单元的地质灾害易损性指数

a1-----地质灾害易发性指数的权重,一般取0.6

a2——地质灾害易损性指数的权重,一般取0.4

5.2 地质灾害危险性等级阈值的确定

1. 地质灾害危害程度分级

地质灾害危害程度是指地质灾害造成人员伤 亡、财产损失与生态环境破坏的程度。根据国务院 《地质灾害防治条例》、国土资源部《建设用地地质灾 害危险性评估技术要求(DZ0245-2004)》和国务院办 公厅关于印发国家突发地质灾害应急予案函(国办 函[2005]37号),地质灾害危害程度按表1标准进行 分级。

2.已发灾害危险性评价

已发地质灾害危险性是指已经发生的地质灾害 点的危险性。地质灾害点的稳定性越差,其活动程 度越高,发生概率越大,危害性越大,可能造成的危 害损失越严重。

地质灾害体的稳定性可采用稳定性分析、半定 量计算和定量计算等多种方法研究确定,并将其稳 定性状态划分为差、中等、好三级。

地质灾害受威胁人数 N_危:

$$N_{fe} = \lambda \sum_{i=1}^{n} M_i \circ S_i$$

式中, *M*_i — 地质灾害危害范围内第 *i* 单元人 口密度(人/m²)

 S_i ——地质灾害危害范围内第 i 单元面积(m^2)

λ——地质灾害发生概率

n——地质灾害危害范围内单元总个数

图3 城市地质灾害危险性分区评价工作流程框图

Fig. 3 Technological processes for the risk assessment of urban geological hazards

表1 地质灾害险情与灾情程度分级标准表险情程度分级

Table 1 Criteria for the division of the grades of the risks and losses caused by geological hazards

	险情程度分级		灾情程度分级				
等级	受威胁人数(人)	潜在经济损失(万元)	等级	死亡人数(人)	直接经济损失(万元)		
特大型	≥1000	≥10000	Ⅰ级	≥30	≥1000		
大型	1000 ~ 500	10000~ 5000	Ⅱ级	30~10	1000 ~ 500		
中型	500 ~ 100	5000~ 500	111级	10~ 3	500 ~ 100		
小型	<100	< 500	IV级	< 3	< 100		

地质灾害潜在经济损失 F_财:

式中, *P*_i——地质灾害危害范围内第 *i* 单元财 产密度(万元/m²)

 S_i ——地质灾害危害范围内第 *i* 单元面积(m²)

λ----地质灾害发生概率

n——地质灾害危害范围内单元总个数

对整体稳定性差的地质灾害体, 地质灾害发生 概率 λ =80%~100%; 对稳定性中等的地质灾害体, 地质灾害发生概率 λ =30%~60%; 对稳定性好的地 质灾害体, λ =0~20%。

根据地质灾害体的稳定状态,危害对象和危害 程度等级,将历史灾害危险性分为大、中等、小三级, 划分标准见表 2。

表 2 已发地质灾害危险性分级表

Table 2 Grading of the risks of historical geological hazards

确 定要素 危险性分级	稳定状态	危害对象	险情(灾情)等级
危险性大	差	城镇及主体建 筑物	大型以上(≫ Ⅲ级)
危险性中等	中等	有居民及主体 建筑物	中型(111级)
危险小	好	无居民及主体 建筑物	小型(IV级)

3. 潜在灾害危险性评价

潜在灾害危险性是指具有灾害形成条件,但尚 未发生地质灾害的地质体的灾害危险性。该地质单 元体的稳定状态可用地质灾害高易发、中易发、低易 发和不易发4个等级反映,地质灾害易发程度越高, 则发生地质灾害的概率越大,危险性越大,可能造成 的灾害损失越严重。

地质灾害威胁人数 N_潜:

$$V_{\begin{subarray}{c} M_i \ } = \lambda \sum_{i=1}^n M_i \ ^\circ S_i$$

式中, *M*_i —— 地质灾害可能危害范围内第 *i* 单 元人口密度(人/m²)

*S*_i —— 地质灾害可能危害范围内第 *i* 单元面积 (m²)

λ——地质灾害发生概率

n ——地质灾害可能危害范围内单元总个数 地质灾害潜在经济损失 *F*_潜:

$$F$$
 潜 = $\lambda \sum_{i=1}^{n} P_i \circ S_i$

式中, *P*_i——地质灾害可能危害范围内第 *i* 单 元财产密度(万元/m²)

 S_i ——地质灾害可能危害范围内第 *i* 单元面积 (m^2)

λ-----地质灾害发生概率

n —— 地质灾害可能危害范围内单元总个数

对整体稳定性差的地质体,地质灾害发生概率 $\lambda = 80\% \sim 100\%$,对稳定性中等的地质体,地质灾害 发生概率 $\lambda = 30\% \sim 60\%$,对稳定性好的地质体, $\lambda \leq 20\%$ 。

根据潜在地质灾害体的稳定状态,危害对象和 危害程度等级,将潜在灾害危险性分为大、中等、小 三级,划分标准见表 3。

表 3	潜在地质灾害危险性分级表

Table 3	Grading	of the	risks	of	potential	geological	hazards
---------	---------	--------	-------	----	-----------	------------	---------

确定要素 危险性分级	稳定状态	危害对象	险情等级	
危险性大	地质灾害高易 发	城镇及主体建 筑物	大型以上	
危险性中等	地质灾害中易 发	有居民 及主体 建筑物	中型	
危险小	地质灾害低一 不易发	无居民及主体 建筑物	小型	

4. 地质灾害危险性等级阈值的确定

根据康定城地质环境分区单元 W_危 计算值与 其采用已发地质灾害危险性评价方法或潜在地质灾 害危险性评价方法判定的危险性等级进行对比分析 研究,确定康定城地质灾害危险性等级划分界限值 为0.65、0.4, 即地质灾害危险性等级阈值 $W_{\hat{a}}^{-}=$ 0.65, $W_{\hat{a}}^{+}=$ 0.4。

5.3 地质灾害危险性分区

根据康定城地质灾害危险性等级阈值 W_{ad}^{A} 、 W_{ad}^{h} 和每个地质环境分区单元的地质灾害危险性指数值 (表 4)进行地质灾害危险程度判定:

$W_{ m fell} \ge 0.65$	地质灾害危险性大
0.4≤ <i>W</i> €<0.65	地质灾害危险性中等
<i>W</i> 危<0.4	地质灾害危险性小

康定城地质灾害危险性大的区域主要分布在二 道桥温泉、城北水泥厂、体育馆、子耳坡沟、箭杆山、 跑马山北坡、椒子杠沟、白土坎、母猪笼、驷马桥和龙 头沟等地带。这些地区既是地质灾害高易发区,又 是地质灾害高易损区,一旦发生灾害,造成的危害巨 大。地质灾害危险性中等的区域主要分布在雅拉河 两岸和城南榆林河右岸的斜坡地带,这些地区断裂 发育,岩体较破碎,多为地质灾害中易发和中易损 区,一旦发生灾害,造成的危害较大。地质灾害危险 性小的区域主要分布在河谷的大部分地带和城南岩 浆岩块状岩体分布区。

6 结 语

康定城地处高山峡谷区,城市建设用地极为有限,在这"寸土寸金"的康定城目前正在开展大规模的城市扩建工程,规划到2020年,城市建设用地面积由现在的不足3km²,扩大到7.57km²,人口由现在的3 万人扩大到5万人。随着康定城市化速度加快,建 设规模不断扩大,人类经济活动不断加剧,城市地质 作用不断加强,康定城地质灾害日趋严重,已严重制 约了城市社会经济的持续发展。编制康定城地质灾 害易发分区评价图、社会经济易损性分区评价图和 地质灾害危险性分区评价图,可直接为康定人民政 府制定城市地质灾害防治规划提供科学依据。

参考文献:

- [1] 丁俊,魏伦武,赖绍民,等.我国西南地区城市地质灾害与防治 对策.中国地质灾害与防治学报[J].2004,15(增刊):119-122.
- [2] 丁俊, 倪师军, 魏伦武, 等. 西南地区城市环境地质调查工作的 思考[J]. 沉积与特提斯地质[J]. 2004, 25(4):108-110
- [3] 王德伟,丁俊,魏伦武,等.四川康定城地质灾害易发分区评价
 [J].沉积与特提斯地质,2005,26(2):
- [4] 王永利,丁俊,王德伟,等.四川康定城地质灾害社会经济易损 性分区评价[J].沉积与特提斯地质,2005,26(2):

表 4 康定城地质灾害危险性评价结果汇总表

Table 4 Summary of the results of risk assessment of geological hazards in Kangding county town

单元	易发性	主评价	易损性评	² 价(2020)	危险性	生评判	单元	易发	生评价	易损性评	价(2020)	危险性	上 评判
编号	等级	指数 E _易	等级	指数 E _损	指数 W _危	等级	编号	等级	指数 E _易	等级	指数 E _损	指数 W _危	等级
01	С	0.4	D	0.04	0.26	小	44	А	0.8	А	0.8	0.8	大
02	С	0.4	D	0.04	0.26	小	45	А	0.8	А	0.8	0.8	大
03	В	0.6	С	0.3	0.48	中等	46	D	0.2	В	0.5	0.32	こ
04	В	0.6	С	0.3	0.48	中等	47	А	0.8	А	0.8	0.8	大
05	В	0.6	С	0.3	0.48	中等	48	А	0.8	А	0.8	0.8	大
06	С	0.4	D	0.04	0.26	小	49	D	0.2	В	0.5	0.32	こ
07	С	0.4	D	0.04	0.26	小	50	В	0.6	А	0.8	0.68	大
08	С	0.4	D	0.04	0.26	小	51	В	0.6	С	0.3	0.48	中等
- 09	В	0.6	С	0.3	0.48	中等	52	С	0.4	D	0.04	0.26	小
10	D	0.2	С	0.2	0.2	小	53	В	0.6	А	0.64	0.62	中等
11	D	0.2	С	0.2	0.2	小	54	D	0.2	В	0.5	0.32	小
12	С	0.4	D	0.04	0.26	小	55	В	0.6	С	0.3	0.48	中等
13	С	0.4	D	0.04	0.26	小	56	A	0.8	Α	0.64	0.74	大
14	D	0.2	С	0.2	0.2	小	57	D	0.2	В	0.5	0.32	小
15	В	0.6	С	0.3	0.48	中等	58	В	0.6	А	0.8	0.68	大
16	В	0.6	С	0.3	0.48	中等	59	А	0.8	А	0.8	0.8	大
17	В	0.6	С	0.3	0.48	中等	60	D	0.2	D	0.06	0.14	こ
18	В	0.6	С	0.3	0.48	中等	61	D	0.2	D	0.06	0.14	小
19	В	0.6	D	0.1	0.4	中等	62	В	0.6	С	0.3	0.48	中等
20	В	0.6	С	0.3	0.48	中等	63	В	0.6	С	0.3	0.48	中等
21	В	0.6	D	0.1	0.4	中等	64	С	0.4	С	0.2	0.32	小
22	В	0.6	D	0.1	0.4	中等	65	В	0.6	D	0.3	0.48	中等
23	В	0.6	С	0.3	0.48	中等	66	С	0.4	С	0.2	0.32	小
24	В	0.6	С	0.3	0.48	中等	67	В	0.6	С	0.3	0.48	中等
25	В	0.6	D	0.1	0.4	中等	68	А	0.8	А	0.64	0.74	大
26	С	0.4	D	0.04	0.26	小	69	А	0.8	В	0.48	0.67	大
27	С	0.4	D	0.04	0.26	小	70	D	0.2	D	0.1	0.16	小
28	В	0.6	В	0.5	0.56	中等	71	D	0.2	С	0.2	0.2	小
29	В	0.6	С	0.3	0.48	中等	72	А	0.8	С	0.32	0.61	中等
30	D	0.2	С	0.3	0.24	小	73	С	0.4	D	0.04	0.26	小
31	В	0.6	D	0.1	0.4	中等	74	С	0.4	D	0.08	0.27	小
32	D	0.2	D	0.06	0. 14	小	75	С	0.4	D	0.04	0.26	小
33	В	0.6	D	0.1	0.4	中等	76	С	0.4	D	0.04	0.26	小
34	В	0.6	D	0.1	0.4	中等	77	А	0.8	А	0.8	0.8	大
35	В	0.6	D	0.1	0.4	中等	78	В	0.6	В	0.5	0.56	中等
36	В	0.6	D	0.1	0.4	中等	79	А	0.8	Α	0.8	0.8	大
37	В	0.6	D	0.1	0.4	中等	80	А	0.8	А	0.8	0.8	大
38	В	0.6	D	0.1	0.4	中等	81	В	0.6	В	0.5	0.56	中等
39	В	0.6	D	0.1	0.4	中等	82	С	0.4	D	0.04	0.26	小
40	В	0.6	D	0.1	0.4	中等	83	С	0.4	D	0.04	0.26	小
41	В	0.6	D	0.1	0.4	中等	84	С	0.4	D	0.04	0.26	<u>ا</u> ر
42	В	0.6	D	0.1	0.4	中等	85	С	0.4	D	0.04	0.26	小
43	В	0.6	D	0.1	0.4	中等	86	С	0.4	D	0.04	0.26	小

A-高易发(损)区; B-中易发(损)区; C-低易发(损)区; D-不易发(损)区

Risk assessment of geological hazards in Kangding county town, western Sichuan

WEI Lun-wu¹, WANG De-wei², DING Jun¹, WANG Yong-li², NI Shi-jun², ZHANG Cheng-ji ang², MAO Yu³, YAN Yi³

(1. Chengdu Institute of Geology and Mineral Resources, Chengdu 610082, Sichuan, China; 2. Chengdu University of Technology, Chengdu 610059, Sichuan, China; 3. Sichuan Institute of Geological Survey, Chengdu 610081, Sichuan, China)

Abstract: Exemplified by Kangding county town, western Sichuan, a new technique is presented for the risk assessment of urban geological hazards. The technique implies the assessment factors and methods for the susceptibility of geological hazards and vulnerability of social economy, and the risk assessment of urban geological hazards. The criteria for the division of risk grades are well in agreement with those issued by the State Council, the People's Republic of China. The results of assessment may directly be used in the planning of prevention and control of urban geological hazards, and will thus provide a scientific base for the precaution and reduce of urban natural hazards as well as monitoring, forecast, removal, and management in the urban area.

Key words: Kangding; geological hazard; risk; technique for assessment; Sichuan

土耳其 Taurides 西部早寒武世弧后火山作用

在安纳托利亚(Anatolia)中西部,下寒武统托莫特阶 Gögebakan 组由弱变质陆相一浅海相碎 屑岩,以及枕状和块状细碧熔岩、粒玄岩岩墙组成。一般呈杏仁状的细碧熔岩,为纳长石-辉石-斑状,及纳长石+方解石+绢云母土绿帘石 土透闪石 土绿泥石变质矿物共生组合。粒玄岩墙主 要含斜长石和辉石这些原生矿物和透闪石 土绿帘石 土绿泥石这些低级变质次生矿物。地球化 学资料表明,细碧熔岩、粒玄岩墙为亚碱性,具大洋拉斑玄武岩特征,并显示拉斑玄武岩分馏趋 向,FeO/MgO、Zr 和 TiO₂ 增加;Zr/Y(2~4.5)、Th/Yb(0.15~1.0)及La/Nb(0.5~2.5)相对较高。 相对于 Th 和 La(Ce),显示明显的 Nb 和 Ti 负异常,表明其化学特征与俯冲作用有关。与 MORB 对比,球粒陨石标准化的 REE 模式显示出 LREE 略微富集(细碧熔岩(La/Yb)_N=0.79~1.56,粒 玄岩墙(La/Yb)_N=(0.89~3.50)。细碧熔岩和粒玄岩墙地球化学的相似性表明了其具有共同的 成因,La/Nb比值均比 MORB 平均值略高,可能形成于弧后盆地发育的早期阶段。成岩作用模式 表明,该组的铁镁质岩由浅部(60 km 左右)9%的尖晶石二辉橄榄岩分批熔融而成。资料的综合 分析表明,早寒武世 Taurus 单元铁镁质岩发育于沿位于向南俯冲的大洋岩石圈之上的冈瓦纳北 缘的弧后盆地内,代表了导致冈瓦纳边缘地体分离的初始裂谷作用。

(摘自 Geological Magazine, 2005, 142(5):617-631)