文章编号: 1009-3850(2004)01-0105-04

川西新都气田上侏罗统蓬莱镇组气藏储层特征

邓莉

(中国石化西南分公司 勘探开发研究院, 四川 成都 610081)

摘要:新都气田蓬莱镇组气藏是由多套含气砂体组合而成的工业性气藏,河口坝为其最有利沉积微相,储层岩性以 细粒岩屑砂岩、细粒岩屑石英砂岩为主,岩性较为致密,以中一低孔渗为主。含气地震响应模式为"低频、强振幅、低 阻抗";测井信息反映储层具有"二高三低"特征。

关键词: 上侏罗统; 蓬莱镇组; 气藏; 储层; 新都气田; 四川中图分类号: TE122.2文献标识码: A

1 概 况

新都气田位于四川盆地川西坳陷东坡,西部和 西北部为彭县-德阳向斜,东南部为洛带-大面铺鼻 状构造带。以该区为中心,自西北至东南,由深到 浅,形成了一个北东向展布的宽缓大斜坡带。新都 气田处于该斜坡带中向北东向倾伏的平缓的新都鼻 状构造上。1996年8月27日部署钻探的川都416井 在上侏罗统蓬莱镇组三段钻遇良好油气显示,经加 砂压裂增产施工,获得天然气产能,实现了新都构 造天然气工业产能的突破。随着川都416井的突破, 在新都构造逐步部署了针对蓬莱镇组气藏的一系列 勘探评价井。截止2002年底,已完钻各类探井18 口,有11口井13层试油获工业气流,发现了蓬一、蓬 二和蓬三气藏。证实了新都气田蓬莱镇组气藏是由 多套含气砂体组合而成的工业性气藏,目前有7口 井投入试采,并已提交探明储量约40×10⁸m³。

上侏罗统蓬莱镇组为一套厚约800~1300m的 河湖相红色砂岩、泥岩互层沉积,顶部以棕褐色泥岩 与仓溪组含砾细粒岩屑砂岩呈微角度不整合接触。 根据沉积旋回和岩性、岩相特征,蓬莱镇组可划分为 J_3p^4 、 J_3p^3 、 J_3p^2 、 J_3p^1 四段,并相应划分出 JP₁、JP₂、 JP₃、JP₄ 气藏,其中 JP₁、JP₂、JP₃ 气藏是目前新都气 田的主力气藏。

2 储层特征

- 2.1 沉积微相
 - 1.沉积格架

新都地区蓬莱镇组以半深水湖至浅水环境沉积 为主,从下而上展示出水体逐渐变浅的进积式组合 样式,总体上发育有半深湖-浅湖亚相、三角洲前缘 亚相,区内发育的苍山页岩、梨树湾页岩、景福院页 岩表明了几次间歇性的半深水湖沉积环境。

J₃p²(JP₃ 气藏)时湖水相对较深, 泥质岩发育, 骨架砂体以水下扇砂坝及广泛分布的席状砂为主; J₃p³(JP₂ 气藏)时经历了从半深水湖(以梨树湾页岩 为标志)到浅湖三角洲, 再到半深水湖(以景福院页 岩为标志)的沉积环境演变; J₃p⁴(JP₁ 气藏)时沉积 是在充填景福院页岩为代表的半深湖的基础上发育 的浅水上三角洲及下三角洲平原相, 在沉积早期, 三 角洲前缘相的河口坝砂体普遍发育^[1]。

2.主要储层微相

河口坝、水下扇砂坝砂岩为最有利的含气沉积 微相,其沉积时水动力条件相对较强,成分、结构成 熟度较高,含泥质少,颗粒相对较粗且分选好,因而 储渗条件较好;较有利沉积微相是席状砂、决口扇及

收稿日期: 2003-03-28

第一作者简介:邓莉,女,工程师,从事油气勘探地质研究。

分流河道砂岩,其厚度较小、粒度较细,含泥质较重, 储渗性偏差。河口坝砂岩之砂层厚7~14m,水平及 沙纹层理发育,电测曲线多呈箱状或漏斗型。水下 扇砂坝砂岩之砂层厚10~20m,变形层理较发育,电 测曲线多呈箱状。

2.2 储层微观特征

1. 岩石学特征

储层岩石类型以细粒岩屑砂岩、细粒岩屑石英 砂岩为主,次为细粒含钙、含泥岩屑砂岩。碎屑以石 英为主,占71.6%;岩屑、长石次之,分别为17.9%, 10.5%。胶结物以方解石为主(为5.4%),少量硅 质、白云质和硬石膏。胶结类型以孔隙式为主,分选 中等一好,磨圆度为次棱角状。据扫描电镜及 X 衍 射分析,粘土矿物主要以绿/蒙混层(平均含量达 41.8%)和伊利石(平均含量达37.8%)为主,次为绿 泥石(平均含量达20.4%)。

2. 孔隙类型与孔隙结构特征

(1) 孔隙类型、形状及大小。据扫描电镜及铸体 薄片观察,新都构造蓬莱镇组气藏储层岩石的孔隙 类型主要有粒间孔、粒间(内)溶孔及晶间微孔,其中 对储层贡献最大的为粒间溶孔与粒间孔,次为粒内 溶孔。

粒间孔分为残余粒间孔与次生粒间孔,其孔径 多介入20~120^µm之间,角孔特征清楚,孔壁有自生 绿泥石或伊利石生长,形成孔隙衬垫或孔隙桥,在储 集空间中较为主要。

粒间溶孔主要发育于连晶方解石胶结较弱的细砂岩和粗粉砂岩中,孔隙形态不规则,部分孔隙边界碎屑颗粒边缘遭受溶蚀而呈港湾状或参差不齐形态,孔径大小多介入30~140⁴m之间;主要为长石、岩屑受溶,部分未破坏的孔隙边界仍具自生绿泥石或伊利石生长,部分孔隙边界缺乏粘土矿物生长是此类型孔隙的显著特征,在储集空间中居主要位置,对储层贡献较大。

粒内溶孔(包括铸模孔)主要发育于连晶方解石 交代较弱或较强的细砂岩中,其溶蚀矿物主要为碎 屑长石和岩屑内部溶解形成,若完全溶解则形成铸 模孔。孔隙形状不规则,孔径多介入20~60^µm之 间。粒内溶孔(及铸模孔)数量较少于粒间溶孔、粒 间孔,这类孔隙对储层贡献较小。

晶间微孔主要发育在方解石胶结较弱的细砂岩 和粉砂岩中。自生绿泥石和伊利石中广泛发育着晶 间微孔,其孔径较小,只有0.8~0.16⁴m,对面孔率 贡献极小,因此其储集意义也小^[2]。 因受较强的成岩后生作用的改造,新都构造蓬 莱镇组气藏储层岩石的孔隙形状大多数为不规则 状,仅见个别呈椭圆状和拉长状孔隙。据铸体薄片 资料统计,单个样品的孔隙均质介于3.7957 ~ $4.7333^{\phi}(72.01 ~ 37.60^{\mu}m)之间,平均为4.160^{\phi}(55.94^{\mu}m)。蓬二气藏储层的孔隙宽度主要集中在$ $<math>4.0 ~ 5.0^{\phi}(62.5 ~ 31.25^{\mu}m)之间,占总样品数的$ 77.1%。孔隙宽度均表现为正态分布。

按孔隙分级标准,蓬莱镇组气藏储层以中孔为 主,次为小孔,少量大孔和微孔,平均面孔率5.23%。

(2)喉道类型及大小。新都构造蓬莱镇组储层 砂岩由于压实作用较强烈,喉道普遍狭窄,以片状喉 道为主,多数较平直,少量呈弯曲片状喉道。喉道类 型有粒间隙、缩颈型喉道及晶间隙,粒间隙是主要的 喉道类型。蓬二气藏砂岩储层孔隙喉道半径分布一 般为0.063~2.5^µm范围内,渗透率贡献的孔喉大小 分布峰位集中在0.16~2.5^µm区间,由此充分反映 出喉道大小对气体流动起着主导作用。储层孔喉多 属微喉,少量细喉^[3]。

从孔喉组合关系上看,新都构造蓬莱镇组气藏 储层孔喉组合类型主要是中孔-微喉,次为小孔-微 喉,少量大孔-微喉和微孔-微喉。

2.3 物性特征

据岩芯物性分析统计,全区蓬莱镇组气藏的平均孔隙度为10.29%,各单井平均孔隙度介于5.97% ~13.43%之间。渗透率一般为 $(0.06 ~ 1.60) \times$ $10^{-3}\mu m^2$,最小 $0.024 \times 10^{-3}\mu m^2$,最大 $16.43 \times 10^{-3}\mu m^2$,平均 $0.801 \times 10^{-3}\mu m^2$ 。高渗透率样品一般与裂缝发育有关,除去有裂缝的样品,基质渗透率一般小于 $1.2 \times 10^{-3}\mu m^2$,全区平均值为 $0.735 \times 10^{-3}\mu m^2$ 。按照国内外对致密储层和常规储层的划分标准,储层属近致密气藏。

在蓬莱镇组各气藏中,物性特征有一定差异,一般埋深浅的JP₁气藏储层物性好于埋深深的JP₂气藏储层。JP₁气藏岩芯孔隙度峰位介于11%~15%之间,占样品总数的87.5%;JP₂气藏岩芯孔隙度峰位介于6%~14%之间(图 1),占样品总数的76.37%。JP₁气藏渗透率的峰位在 $(0.2 ~ 1.4) \times 10^{-3} \mu m^{2}$ 之间,JP₂气藏渗透率的单位在 $(0.1 ~ 1.2) \times 10^{-3} \mu m^{2}$ 之间,占样品总数的74.3%(图 1)。

2.4 储层分类评价

据薄片和压汞资料综合分析,新都地区蓬莱镇 组气藏具有孔隙度较高,孔隙结构较好,粒间溶孔与 粒间孔较发育,由常规储层向致密储层过渡的特征,

图 1 新都气田蓬莱镇组气藏孔隙度、渗透率频率分布直方图 A.蓬一气藏: B.蓬二气藏; C.蓬莱镇组气藏

Fig. 1 Histograms showing the frequency distribution of the porosity and permeability for the gas pools in the Penglaizhen Formation in the Xindu gas field

A=Peng-1 gas pool; B=Peng-2 gas pool; C=gas pools in the Penglaizhen Formation

而且其储层的储集性与岩相、岩石类型密切相关。 统计结果表明,岩性与孔隙结构有着较好的对应关 系,细粒岩屑砂岩及细粒岩屑石英砂岩的孔隙结构 最好,少量含钙、含泥细粒岩屑砂岩或岩屑石英砂岩 次之,而含钙细粒岩屑砂岩、含钙含泥粗粉砂岩和 细砾岩孔隙结构最差,总体上随着含钙、含泥及粗粉 砂含量的增加孔隙结构明显变差。

根据均值与排驱压力、饱和度中值压力、变异系

数及不同喉道进汞百分数的相关图,并结合岩性,将 储集岩分为4类³(表1),对全区有效样品按分类 参数分别进行了"J"函数处理,得出各类储层样品的 平均毛管压力曲线,并分类统计了各类型储层的毛 管压力曲线特征参数及物性参数。

分析各类储层的含气性特征,可以看出以上 4 类储层中,Ⅰ、Ⅱ类储层对产气起主要贡献,占样品 总数的55.5%;Ⅲ类储层虽占一定比例,因其物性和

	Table 1 Classification of the reservoir focks from the gas pools in the rengiaizhen Formation in the Andu gas neu										
类别	岩性	Р _ď 10 ⁶ Ра	<i>Р</i> _с 50/ 10 ⁶ Ра	均值∕∮	变异系数 C	>0.075 ⁴ m 孔喉体积 分数/ %	>0.1 ^µ m 孔喉体积 分数/ %	>0.2 ^µ m 孔喉体积 分数/%	评价	含气性	
Ι	细粒岩屑砂岩、细 粒岩屑石英砂岩	< 0.4	< 2.0	< 11. 3	> 0. 238	> 75	> 69	> 64	好储集岩	气 层	
II	细粒岩屑砂岩、细 粒岩屑石英砂岩	0.4~1.2	2.0~4.0	11. 3~12. 5	0. 238 ~ 0. 186	75~67	69~61	64~50	好储集岩	气 层	
III	细粒岩屑石英砂 岩、含钙细粒岩屑 石英砂岩、含钙粗 粒粉砂岩	1. 2 ~ 3. 0	4.0~15.5	12. 5~13. 9	0. 186~0. 15	67~40.5	61~33	50~18	较 差 储集岩	含气层	
IV	含钙含泥细粒岩、 含钙、含泥粗粉砂 岩等	> 3.0	> 15.5	> 13. 9	< 0. 15	< 40.5	< 33	< 18	非储集岩	干层	

表 1 新都气田蓬莱镇组气藏储层分类表

孔隙结构较差,所以储集能力也较差;IV类非储层占 样品频率的18.5%,基本不具备储集能力。

2.5 储层地震及测井响应特征

1. 含气砂体地震响应特征

由该区及川西邻区工业气井得到验证,凡产层 井段在地震时间剖面上均有视低频响应,尤其在地 震保幅或保偏剖面上更加清楚。除测井曲线上含气 砂体对应的高声波时差,低密度值和低伽玛值可作 为佐证外,在特殊处理剖面如井约束波阻抗反演或 道积分剖面亦可见反映含气砂体横向变化的低阻抗 特征^[5],即低频强波谷和其下的强波峰共同组成了 "低频、强振幅、低阻抗"含气地震响应模式。

2. 含气砂体测井响应特征

蓬莱镇组储层的自然伽玛上表现为低一中值, 测值为40~80API, 个别储层段有高伽玛值; 自然电 位负异常明显; 并径平直与钻头相等或略有缩径; 声 波时差为中高值, 一般为75~90⁴s/ft, 受天然气影 响, 有时有"跳波"现象; 中子为中低值, 一般为6%~ 14%; 密度曲线为中低值, 一般为2.3~2.5g/cm³; 当地层具有好的含气性时, 电阻率测值略有增高, 表 明地层有较好的渗透性; 深浅双侧向曲线常呈正幅 度差。概括地说, 测井信息反映储层具有二高三低 特征, 即高AC、相对高电阻、低自然伽玛、低中子、 低密度。气田中各个气层的含气响应特征是一致 的, 不同的岩性组合、沉积环境、构造位置、砂体发育 状况及埋深又导致气层具有一些不同的变化特征, 主要有4种具有代表性的气层。蓬莱镇组储层的电 性特征与其上、下围岩的电性特征形成明显的反差, 即储层的岩性、物性、含气性与电性有较好的相关性 及统一性,表明蓬莱镇组储层为孔隙型储层。

3 结 论

新都气田蓬莱镇组气藏是由多套含气砂体组合 而成的工业性气藏,其有利沉积微相为河口坝、水下 扇砂坝砂岩;储层岩石类型以细粒岩屑砂岩、细粒岩 屑石英砂岩为主,次为细粒含钙、含泥岩屑砂岩,孔 隙类型主要有粒间孔、粒间(内)溶孔及晶间微孔,以 中孔为主,次为小孔,少量大孔和微孔。喉道普遍狭 窄,以片状喉道为主,孔喉多属微喉,少量细喉。储 层岩性致密,全区平均孔隙度为10.29%,渗透率 0.735×10⁻³µm²,为中-低孔、低渗致密储层。其含 气地震响应模式为"低频、强振幅、低阻抗"。测井信 息反映储层具有"二高三低"特征,即高AC、相对高 电阻、低自然伽玛、低中子、低密度。

参考文献:

- [1] 吴胜和 熊琦华. 油气储层地质学[M]. 北京. 石油工业出版社. 1997.
- [2] 任磊夫. 粘土矿物与粘土岩[M]. 北京: 地质出版社, 1992.
- [3] 罗蛰潭, 王允诚. 油气储集层的孔隙结构[M]. 北京: 科学出版 社 1986.
- [4] 王允诚. 油气储层评价[M]. 北京: 石油工业出版社, 1999.
- [5] 刘震. 储层地震地层学[M]. 北京: 地质出版社, 1997.

The gas reservoirs in the Upper Jurassic Penglaizhen Formation in the Xindu gas field, western Sichuan

DENG Li

(Research Institute of Petroleum Exploration and Development, Southwest China Branch, SINOPEC, Chengdu 610081, Sichuan, China)

Abstract: The gas pools in the Upper Jurassic Penglaizhen Formation in the Xindu gas field, western Sichuan are believed to be the industrial gas pools consisting of a number of gas-bearing sandstone bodies. The favourable sedimentary microfacies is represented by channel mouth bar and submarine fan bar sandstones. The lithologies comprise fine-grained lithic sandstones and lithic quartz sandstones, which are relatively densed, with moderate to low porosity and permeability. The seismic response model for the gas-bearing sandstones displays the features of low frequency, high amplitude and low impedance, and the well-logs for the gas reservoirs exhibit the electrical properties of high AC, high resistance, low natural gamma-ray log, low neutron log and low density. **Key words:** Upper Jurassic; Penglaizhen Formation; gas pool; reservoir rock; Xindu gas field; Sichuan