DOI:10. 19826/j. cnki. 1009-3850. 2021. 07001

南大巴山上奧陶统五峰组—下志留统龙马溪组 泥岩元素地球化学特征

熊国庆^{1,2},刘春来³,董国明³,崔伟³

(1. 中国地质调查局成都地质调查中心,四川 成都 610081;2. 自然资源部沉积盆地与油气资源重点实验室,四川 成都 610081;3. 河北省地质矿产勘查开发局第二地质大队,河北 唐山 063004)

摘要:元素地球化学在沉积环境判别中发挥重要的作用,尤其是沉积物形成时的氧化 – 还原环境和底层水体状况。 本文对南大巴山上奥陶统五峰组—下志留统龙马溪组泥岩开展了元素地球化学分析,结果表明:临湘组 Al₂O₃含量 高于五峰组,五峰组—龙马溪组向上逐渐增加,TiO₂和 Al₂O₃具有相似的特征,二者与 TOC 呈负相关;氧化 – 还原敏 感元素 U、V 和 Mo 较为富集,表明沉积时处于缺氧环境,不同剖面不同层位存在两次强烈富集异常,指示其为硫化 环境;稀土元素均表现为轻稀土富集、重稀土亏损,略微右倾的稀土元素配分模式,具有明显 Eu 负异常,其中五峰 组—龙马溪组 Ce 负异常,缺氧环境,栗子坪少数 Eu 正异常,可能存在热液活动;氧化 – 还原敏感元素比值、Mo/TOC 及 Mo_{EF}-U_{EF}的协变模式揭示了南大巴山奥陶纪—志留纪之交主体上处于弱滞留贫氧 – 中等滞留缺氧的开阔海环 境,主要受控于海平面升降变化和沉积时古海底地形,局部受北侧秦岭洋盆内洋流影响。

关键 词:南大巴山;元素地球化学;氧化-还原环境;底层水体状况;奥陶纪-志留纪之交

中图分类号:P595;P534.42 文献标识码:A

奥陶纪—志留纪之交处于全球气候反复波动, 冷暖交替的"多事之秋",各种地质事件频发,主要 包括火山事件(黄志诚等;1991;苏文博等,2002;胡 艳华等,2008,2009;Hermann et al., 2010),大洋缺 氧事件(Jones et al., 1993;Brenchley et al., 1995; Smolarek et al., 2017),冰川事件(Sheehan,1973;戎 嘉余,1984;戎嘉余和陈旭,1987;Delabroye and Vecoli,2010),元素、同位素异常事件(汪啸风和柴 之芳,1989;Wang et al., 1993,1997;Marshall et al., 1997;Fan et al., 2009;周业鑫等,2017)及生物集群 灭绝和复苏事件(汪啸风等,1983;陈旭等,1987;尹 伯传,1988;汪啸风和柴之芳,1989;戎嘉余和詹仁 斌,1999;陈旭等,2000;王传尚等,2001;戎嘉余等, 2006;严德天等,2009)等。这些重大地史事件不仅 影响了海洋循环、古气候、海平面变化及岩石学等 (Munnecke et al., 2010),地球化学方面的证据也明 显地被打上了印记,成为多年来持续关注的焦点和 研究热点。

晚奧陶—早志留世,华南正处于赤道附近 (Scotese and McKerrow,1991)。这一时期的冈瓦纳 大陆冰川围绕当时的南极,以非洲北部为中央活动 区,因此冰川活动并未在中国留下诸如南华系南沱 组冰碛岩的直接的岩石学证据(戎嘉余,1984)。但 高纬度区的浅、冷、高密度的海水向下,并向赤道方 向运移,类似于现今的东赤道冰舌(Jin et al., 2018),造成了富氧、富营养的寒冷深水流,导致了 大洋翻转(Brenchley et al., 1995; Owenand Robertson,1995;陈旭等,2018),间接地影响了华南

收稿日期: 2021-05-31;改回日期: 2021-07-03

作者简介:熊国庆(1975—),男,博士,正高级工程师,矿物学、岩石学、矿床学专业。现从事岩相古地理、沉积地质、页岩 气地质等方面研究。E-mail: hsiungq@163. com

通讯作者:刘春来(1978—),男,工程硕士,高级工程师,地质学、地质工程专业。现从事矿产地质勘查及矿床学等方面研究。E-mail: liuchunlai990@163.com

资助项目:本文为四川盆地龙马溪组页岩气战略选区调查(编号:DD20160193)、贵州凯里 – 都匀地区页岩气地质调查 (编号:DD20190722)和重庆市页岩气勘探有利区带优选及资源量评价研究(渝东北地区)

地区的海平面升降、温度变化、生物相、古地理等方面变化(Chen et al., 2004;戎嘉余,1984)。

晚奧陶—早志留世上扬子海为一个三面古陆 环绕,内部"隆坳相间"的向东北开口的局限滞留海 盆(张琳娜等,2016;聂海宽等,2017),有利于海水 分层,底层水缺氧,有机质富集保存,盆内普遍发育 了五峰组和龙马溪组两套富有机质黑色页岩。赫 南特冰期,极区大量的冷水潜入低纬度海洋的深 层,短暂打破了海水分层模式(陈旭等,2018),观音 桥段沉积以含赫兰特贝冷水生物群的碳酸盐岩为 主,局部缺失(Chen et al., 2004;王怿等,2011, 2013;樊隽轩等,2012;陈旭等,2018)。关于这一时 期盆内五峰组—龙马溪组氧化 – 还原环境及其底 层水体的流通状况,前人已做了大量的研究(王传 尚等,2002;严德天等,2009;李艳芳等,2015a,b;熊 小辉等,2015;张琴等,2018;刘田等,2019),开展了 区域对比,建立了相应的沉积演化模式(Yan et al., 2008,2012;Zhou et al., 2015;邱振等,2017;李朋等, 2018;熊国庆,2020),这些研究多基于单个剖面,缺 乏横向上对比。大巴山地区作为上扬子海的东北 出海通道,古海底凹凸不平,隆坳相间,存在一系列 水下潜隆(熊国庆等,2017a),区内沉积氧化 – 还原 环境和底层水体垂向上和横向上如何变化?与盆 内长宁—双河和南川三泉等地有何差异?为此,笔 者对南大巴山不同剖面开展了较为系统采样(图1, 图2),探讨其沉积氧化 – 还原环境和底层水体流通 状况,并进行盆内对比。

图 1 南大巴山构造位置(图 1a, 据李智武等, 2006 修改)及其地质简图(图 1b) Fig. 1 Tectonic location (1a, modified from Li et al., 2006) and geological sketch map (1b) of southern Daba Mountain

1 地质背景

大巴山地区地处四川盆地与秦岭造山带的过 渡地带,构造上属于东秦岭造山带一部分,城巴断 裂将其分成南、北大巴山两个构造单元,总体上呈 向南凸出的弧形构造(图1a)。北大巴山地层主要 为震旦系和寒武系,早古生代辉绿岩顺层或断裂发 育。研究区位于南大巴山米仓山隆起和神农架隆 起之间,出露地层从老到新为震旦系、寒武系、寒武 系—奥陶系、奥陶系—志留系、志留系、二叠系、三 叠系及侏罗系,缺失泥盆系和石炭系。根据区内断 层和地层褶皱发育情况,南大巴山构造带自北向南 依次分为逆冲断层带、断层褶皱带和滑脱褶皱带三 个次级构造单元(李智武等,2006,图1b)。晋宁造 山运动将华北地块和华南地块拼贴在一起。随着 全球 Rodinia 超大陆裂解,研究区先后经历了新元 古代裂谷发育与充填阶段,震旦纪裂谷填平补齐阶 段,寒武纪-志留纪被动陆缘阶段(张国伟等, 2001),泥盆纪—石炭纪前陆盆地阶段(吉让寿等, 1990,1997),二叠纪—三叠纪碰撞裂谷阶段(肖安 成等,2011;毛黎光等,2011),侏罗纪前陆盆地阶 段,白垩纪-燕山期陆内碰撞造山阶段,于喜山期 定型(张国伟等,1995),最终形成现今的地貌格局。

大巴山地区位于上扬子海域东北,秦岭以北与 早古生代古秦岭洋广阔海域相通,沉积时受到上扬 子海和古秦岭洋共同影响。奥陶纪-志留纪之交, 沉积了五峰组硅质岩、硅质页岩夹碳质页岩;观音 桥段浅灰、灰色薄--中层状细、粉砂岩与黑色薄 层—薄板状硅质炭质泥岩互层或灰色、深灰色薄层 或透镜状泥灰岩、白云岩,局部见赫南特贝、角石化 石;龙马溪组碳质页岩、粉砂质碳质页岩和碳质粉 砂质页岩。与下伏临湘组瘤状灰岩或灰色泥岩整 合或假整合接触,局部五峰组硅质岩直接假整合于 宝塔组龟裂纹灰岩之上;与上覆新滩组砂岩、泥岩 整合接触(熊国庆等,2019a)。五峰组和龙马溪组 黑色页岩中笔石极为发育,局部缺失笔石带,如城 口蓼子口五峰组底部产 Climacograptus sp. 笔石,与 临湘组之间缺失 D. szechuanensis 笔石带(熊国庆 等, 2019a);城口田坝杉树梁至大岩门产 Dicellograptus sp. 笔石的五峰组与产 Glyptograptus gracilis 笔石的龙马溪组之间也缺失部分笔石带(葛 梅钰,1990)。近年来,陆续在五峰组-龙马溪组钾 质斑脱岩获得了一系列 440.4 ± 5.6Ma ~ 450.9 ±

1.6Ma的锆石 U-Pb 同位素年龄(熊国庆等,2017b, 2019b;Ge et al., 2018),不仅限定了同沉积地层五 峰组—龙马溪组的沉积时限,也揭示了该时期钾质 斑脱岩的火山喷发时间。

2 样品及分析

2.1 剖面特征及采样

研究剖面主要来自于南大巴山东湖北竹溪栗 子坪 (GPS: N31° 34' 7.3", E109° 52' 8.7") 和双桥 (GPS:N31°35′18.4″,E109°48′3″)及南大巴山中重 庆巫溪田坝(GPS:N31°24′42.3″,E108°52′35.5″)。 栗子坪和双桥剖面处于同一单斜构造内。栗子坪 剖面位于栗子坪村的小河沟里,因河床掩盖较为严 重,未见顶、底,附近可见浅灰色泥岩夹泥灰岩与临 湘组瘤状灰岩接触,将其作为剖面底部,向上灰质 含量减少,泥质含量增加,泥岩颜色也逐渐加深(图 2),这些特征与双桥剖面基本一致,表明临湘组与 五峰组为岩性渐变过渡,反映了海水逐渐变深的沉 积过程(熊国庆等,2019a)。田坝剖面位于田坝镇 北国道边,五峰组底部黑色泥岩直接覆于临湘组瘤 状灰岩之上,二者之间岩性变化截然,表现为一次 明显地快速海侵过程。不同剖面临湘末期的沉积 差异与剖面所处被动陆缘的不同构造部位有关(熊 国庆等,2017a)。上奥陶统五峰组均为一套深水陆 棚相的硅质碳质泥岩、硅质岩沉积;不同剖面的观 音桥段沉积也有明显区别,栗子坪剖面以黑色泥岩 夹多套砂岩透镜体为主,重晶石结核、斑脱岩极为 发育(图 3a);双桥剖面可能短暂暴露,五峰组顶部 硅质碳质泥岩可见黄铁矿结核风化、淋滤后形成的 铁质风化壳、溶蚀孔洞(图 3b);田坝剖面则沉积了 含冷水动物群赫兰特贝的透镜状粉砂质泥岩(图 3c,3d),这种差异同样与剖面所处被动陆缘的不同 构造部位有关(熊国庆等,2017a)。下志留统龙马 溪组黑色泥岩为一套快速海侵过程的产物,属深水 陆棚环境下的凝缩段饥饿沉积,与赫兰特期冰川消 融引起全球海平面迅速上升有关。随后逐渐发生 海退,沉积物颜色变浅,粒度变粗,发育一套浅水陆 棚沉积(图2)。本次研究对三条剖面进行了较为系 统采样,双桥剖面因掩盖较为严重,可与栗子坪剖 面互为补充,样品在剖面中的具体位置见图2。

2.2 样品处理及测试

采样时已尽量剥除风化表面,保证样品新鲜和 足量,全岩样品经表面去污、人工破碎和清洗烘干

图 2 南大巴山上奥陶统五峰组 - 下志留统龙马溪组地层对比及采样位置

Fig. 2 Stratigraphic correlation of the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in southern Daba Mountain and sampling sites

(<45℃下)后,将烘干的粗碎样品放入刚玉腭板无 污染碎样机中细碎至小于 0.5cm 粒度,再将正样 (<0.5cm)置入 XCS-2 型无污染玛瑙球磨机的玛瑙 罐内磨至 200 目以下。

常量、微量和稀土元素测试分析在核工业北京 地质研究院分析测试研究中心完成。称取 0.7g 样 品粉末,精确至 0.1mg,放入 25mL 瓷坩埚中,加入 5.2g 无水四硼酸锂(700℃灼烧 2h)、0.4g 氟化锂 (105℃烘 2~4h)和 0.3g 硝酸铵(105℃烘 2~4h) 搅拌均匀,移入铂金合金坩埚中,加入 1mL 溴化锂 溶液(15g/L),置于电热板上烘干,将坩埚放在自动 火焰溶样机上,盖上坩埚盖,在 1150~1250℃熔融 10~15min,自动转动坩埚,使熔融物混匀,将熔融物 倒入已加热至 800 的铸模中浇铸成型,冷却后将玻 璃样片剥离,放于干燥器内保存用于常量元素分 析,仪器为AB-104L,PW2404 X射线荧光光谱仪,电 压 50kV,电流 50mA,粗狭缝,视野光栅直径 30mm, 相对误差为±1%~±4%。准确称取岩石粉末样品 (<200 目)25mg或 50mg(精确至 0.01mg),放入密 闭溶样器中,加入 1mL 氢氟酸(1.16g/mL)和 0.5mL 硝酸(1.42g/mL)密封,将溶样器放入烘箱加 热 24h,温度 185℃±;冷却后取出,将其置于电热板 上加热蒸干,加入 0.5mL 硝酸(1.42g/mL)后蒸干, 再加入 5mL 硝酸(1.42g/mL 硝酸与水 1:1)密封, 放入烘箱中 130℃加热 3h,冷却后取出,将溶液定量 转移到塑料瓶中,用水稀释后取 25mL 或 50mL 用于 微量、稀土元素测定,测试在 ELEMENT XR 等离子 质谱分析仪进行,相对误差为±3%~±12%。常量

图 3 南大巴山上奥陶统观音桥段典型沉积特征

元素及微量、稀土元素测试分析结果分别见表1、表 2 和表3。

总有机碳含量测量的碎样质量不应少于 10g, 称取 0.01g~1.00g 试样,精确到 0.0001g。样品测 试在自然资源部重庆矿产资源监督检测中心德国 耶拿 multi N/C 3100 TOC 总有机碳/总氮分析仪上 进行,相对误差为±3%,检测限为 4mg/L。测试流 程:在盛有试样的瓷舟内先加入过量的盐酸去除无 机碳,然后将试样放入烘箱 105℃下烘干,除尽过量 的盐酸,冷却后,再将处理过的试样依次通过总有 机碳测定仪进行测定,按照每 10 个试样加测 1 个标 样进行质量监控;试样中的有机质在高温下燃烧, 并充分氧化,仪器通过检测试样的燃烧产物,通过 换算确定试样中的总有机碳含量,测试分析结果见 表1。

全岩稀土元素采用北美页岩(NASC)进行标准 化。元素富集因子(EF_x)采用公式 EF_x = (X/ Al)_{样晶}/(X/Al)_{平均页岩}计算(Wedepohl,1991),若 EF_x >1,元素相对平均页岩(AS)富集,反之 EF_x <1,元 素相对亏损。元素异常值计算公式:Uau = U - Th/3 (Jones and Manning, 1994), δ U = 2U/(U + Th/3) (吴朝东等, 1999); δ Ce = Ce_N/(La_N × Nd_N)^{1/2}, δ Eu = Eu_N/(Sm_N × Gd_N)^{1/2}。所有计算结果分别见表 1 和表 2。

3 分析结果

3.1 主量元素

栗子坪临湘组 Al₂O₃含量为 6.01% ~ 8.03%, 平均 6.77%,五峰组下部与临湘组大体相当,为 6.5% ~ 8.39%,平均为 7.4%,向上变为 11.21% ~ 16.49%,平均为 13.71%,龙马溪组为 12.61% ~ 17.31%,平均为 15.37%,高于五峰组上部,总体上 表现为向上逐渐增多的趋势;双桥临湘组 Al₂O₃含 量 16.7% ~ 17.51%,明显高于龙马溪组 2.61% ~ 10.88%,平均 7.07%;田坝五峰组 Al₂O₃含量剧烈 变化,由 16.32%变为 1.32%,龙马溪组呈现两次由 低到高的变化趋势,分别为 6.39% ~ 12.82%,平均 9.86% 和 7.57% ~ 16.19%,平均 11.63%,顶部新 滩组 Al₂O₃含量接近 20%。横向上,栗子坪和田坝 剖面 Al₂O₃含量大体相当,高于双桥(表 1)。TiO₂含 量变化与 Al₂O₃相似(表 1),且两者与样品 TOC 含 量均呈负相关(图 4a,b)。

3.2 微量元素

剖面样品氧化 - 还原敏感元素与平均页岩 (Wedepohl,1991)标准化蛛网图如图 5 所示。双桥 和栗子坪临湘组 Mo 元素亏损,其他元素基本一致; 而五峰组—龙马溪组显示了 V、Mo、U 元素富集, Co、Cu 元素亏损,Cr、Ni 大体相当。田坝除了五峰组

图 4 南大巴山五峰组—龙马溪组泥岩 Ti 与 TOC(a)及 Al 与 TOC 相关性(b)

Fig. 4 Diagrams showing relevances of Ti and TOC(a) and Al and TOC(b) of mudstones of Wufeng Formation and Longmaxi Formation in southern Daba Mountain

Fig. 5 AS-normalized Spider diagrams of redox-sensitive elements of mudstones in Wufeng Formation and Longmaxi Formation in southern Daba Mountain

|--|

Formation	and Longn	axi Form	ation in s	southern]	Daba Mou	ıntain						
样品	地层	$\operatorname{Al}_2\operatorname{O}_3$	TiO ₂	EF_{V}	$\mathrm{EF}_{\mathrm{Cr}}$	$\mathrm{EF}_{\mathrm{Co}}$	$\mathrm{EF}_{\mathrm{Ni}}$	$\mathrm{EF}_{\mathrm{Cu}}$	$\mathrm{EF}_{\mathrm{Mo}}$	$\mathrm{EF}_{\mathrm{Th}}$	EF_{U}	TOC
S14		8.18	0.42	3.85	1.16	0. 22	1.13	0.41	20.65	1.74	12.63	3.18
S13		7.44	0.37	3.63	1.03	0.10	1.01	0.31	15.88	1.24	6.55	4.11
S12		6.13	0.39	8.97	1.40	0.10	3.20	0.36	111.05	2.34	12.88	7.17
S11		8.03	0.35	3.93	1.15	0.44	3.03	5.22	27.91	1.91	9.61	4.33
S10	771+2	2.61	0.15	3.40	0. 98	1.89	4.72	5.73	49.95	1.70	8.89	4.18
S9	双价 	5.24	0.25	1.27	0.80	0.15	0.57	0.44	12.50	2.06	9.30	2.14
S8	龙马侯组	10.88	0.53	1.56	0. 79	0.09	0.45	0.36	13.87	1.33	3.30	3.08
S7		6.68	0.35	4.35	1.05	0.05	1.32	0.31	30. 38	1.17	6.22	5.01
S6		6.74	0.36	4.35	1.22	0.10	1.57	0.57	44.31	1.70	9.84	5.22
S5		7.50	0.40	7.24	1.51	0.08	2.20	0.48	63.02	1.71	12.76	6.24
S4		8.34	0.46	3.27	1.43	0.20	2.01	0.88	14.63	1.49	3.51	4.32
S3	双桥	16.70	0.75	0.73	0. 81	0.65	0.73	4.69	0. 23	2.02	0.63	0. 142
S1	临湘组	17.51	0.76	0.64	0.65	0.86	0.72	0.87	0.09	1.70	0.46	0.162

 Table 1
 Analysis results of TOC and major elements and Al-normalized values of minor elements of mudstones of Wufeng

 Formation and Longmaxi Formation in southern Daba Mountain

$\tau v \tau$

沉积与特提斯地质

续表1												
SH18		16.01	0. 59	1.92	0.98	0.82	1.22	1.26	6.10	1.40	2.27	1.9
SH17		17.31	0.62	0.99	0. 79	0.93	1.65	1.23	13.54	1.33	3.13	2.49
SH16		15.24	0.62	2.20	1.04	0.80	1.16	1.34	5.94	1.47	2.39	1.88
SH15	栗子坪	15.45	0.56	2.79	0.81	0.31	0.81	0.43	6.07	1.30	2.83	2.27
SH14	龙马溪组	14. 79	0.53	1.17	1.03	0.41	0.43	0.96	9.55	1.65	3.84	3.08
SH13		15.44	0.70	1.05	0.79	0.26	0.23	0.35	16. 14	1.70	4.44	3.79
SH12		12.61	0. 59	1.42	1.09	0.16	0.31	0.55	13.70	2.02	4.15	3.22
SH11		16.09	0.46	1.09	0.81	0.37	0.38	0.79	11.46	1.49	3.73	2.76
SH10		14. 59	0.67	1.25	0. 93	0.61	0.48	0.87	14.39	1.83	5.69	4.05
SH9		16.49	0. 57	0.71	0.60	0.41	0.49	0.63	6. 89	1.32	2.09	2.29
SH8		15.36	0. 52	0.72	0.56	0.57	0.56	0. 98	5, 69	1.33	3.00	2, 26
SH7		14. 95	0. 55	0.85	0.66	0.65	0.74	1.06	6. 74	1. 33	2, 60	2.37
SH6	栗子坪	11.62	0.33	2. 72	0.67	0.31	2.64	3 23	20.39	1.12	6 18	4.31
SH5	五峰组	11.02	0.48	2.72	1 08	0.20	1 64	2 16	11 57	1.12	3 09	4 4
SH4		11. 73	0.33	1 73	0.68	0.45	1.01	2.10	8 43	0.88	2 41	4 28
SH3		7.00	0.47	4 15	1 43	0.78	3 31	2.91	31 01	2 03	6.21	5 39
SH2		8 69	0.30	9 37	1 33	0.17	1 59	1 11	29 19	1.27	5.09	6 21
SH1		6.50	0.30	17 71	2 35	0.32	2 27	1.11	34 68	1. 27	6.73	5.86
0112		0.00	0.50	1,07	1.20	1.00	1.52	0.55	0.00	2.45	1.07	0.040
SH3	栗子坪	8.03	0. 73	1.37	1.39	1.88	1. 53	8. 55	0. 23	3.45	1.07	0.242
SH2	临湘组	6.01	0.76	2.20	1.86	3. 13	2.19	2.07	0.34	5. 19	1.49	0.309
SHI		6. 28	0.65	1. 76	1.44	2.35	1.83	1.26	0. 29	4.30	1.05	0. 153
YP23		20.26	0.82	1.03	0.88	0.23	0.58	0.58	0.64	1.13	1.29	
YP22		19.15	0.76	1.11	0.91	0.21	0.63	0.46	1.08	1.24	1.52	1.55
YP21		16.17	0.60	1.02	0.81	0.36	0.66	0.79	1.83	1.15	0.87	
YP20		12.08	0.67	2.30	0.86	0.16	0.68	0.73	5.66	1.56	3.22	
YP19		13.48	0.65	2.33	0.93	0.19	0.65	0.29	6.16	1.64	2.69	2.25
YP18		14.43	0.69	2.83	0.95	0.48	1.23	0.85	6.01	1.59	2.85	2.47
YP17		11.73	0.56	3.27	0.86	0.08	0.57	0.41	3.16	1.60	2.42	
YP16		13.77	0.72	2.51	0.92	0.20	1.03	0.38	8.78	1.80	4.10	3.48
YP15		7.80	0.45	9.75	1.09	0.30	2.17	0.56	8.76	2.14	7.41	1.78
YP14-2	田市	10.38	0.55	3.91	0.66	0.05	0.19	0.72	4.95	2.56	9.91	
YP14-1	山	8.82	0.46	3.29	1.05	0.06	0.37	1.87	1.63	1.86	3.93	
YP14	<i>л</i> т <u>е</u> л	7.57	0.38	4.28	1.20	0.12	1.15	2.07	6.24	1.86	4.47	
YP13		11.84	0.58	1.89	0. 98	1.04	2.16	1.83	7.32	1.77	4.73	4.08
YP12		11.63	0.55	3.02	1.05	1.18	2.60	1.62	9.40	1.82	5.08	5.35
YP11		12.00	0.55	1.57	0. 93	1.27	1.99	2.07	7.27	1.68	4.85	4.1
YP10		11.46	0.54	1.97	0.92	0.57	1.36	0.81	8.58	1.44	3.38	3.85
YP9		12.82	0.64	1.57	0.89	0.05	0.34	0.18	7.09	1.48	3.18	3.88
YP8		6.43	0.46	2.32	0.90	0.04	1.00	0.30	31.79	2.62	6.31	6.13
YP7		8.04	0.52	2.54	0.78	0.05	1.19	1.67	13.47	2.04	6.46	5.23
YP6		6.39	0.35	3.80	1.02	0.05	1.42	3.44	9.13	1.56	9.60	4.36
YP5		8.13	0.54	9.70	1.31	0.08	2.64	0.49	37.23	1.87	16.49	7.56
YP4		1.32	0.06	12.55	2.46	0.12	2.83	3.08	7.29	1.29	6.70	1.77
YP3	田相元政の	4.41	0.19	2.11	1.22	0.05	0.61	1.48	1.09	1.89	3.68	0. 989
YP2	口坝丑雌珇	13.03	0.66	2.76	1.69	0.08	1.27	0.74	0.87	1.67	2.52	5.27
YP1		16.32	0.78	1.31	1.16	0.08	0.54	0.38	0.37	1.93	1.48	

图 6 南大巴山五峰组—龙马溪组泥岩稀土元素北美页岩标准化特征

Fig. 6 NASC-normalized diagrams of REEs of mudstones of Wufeng Formation and Longmaxi Formation in southern Dabashan Mountain

个别样品外,其余样品也显示了相似的特征。

剖面样品稀土元素的北美页岩标准化如图 6 所示。栗子坪、双桥和田坝样品稀土元素均表现为轻稀土富集、重稀土亏损,略显右倾的稀土元素配分模式。临湘组样品的 Ce 略微正异常,五峰组一龙马溪组均为 Ce 负异常;除栗子坪少数样品为 Eu 正异常外,其余样品均为 Eu 负异常(图 6),少数 Eu 正异常可能与这一时期的海水热液活动有关(Klinkhammer et al., 1983;严德天等,2009;熊国庆,2020),同期地层中大量的重晶石结核充分说明了这次热液活动的存在(昝博文等,2017)。此外,双

桥多数样品显示其稀土元素含量较栗子坪和田坝 剖面要略低的特征。

3.2 有机碳含量

栗子坪和双桥剖面临湘组泥岩的 TOC 含量普 遍很低,均小于 0.5%,田坝剖面五峰组上部泥岩也 较低,介于 1.0% ~ 2.0% 之间。所有剖面的龙马溪 组下部 TOC 均大于 2%,最高可达 7.56%,向上 TOC 含量变化区间在 1.5% ~ 2.0% (图 7,图 8,图 9)。垂向上,龙马溪组底部、中部 TOC 含量较高,表 现出两次向上逐渐减少的趋势。横向上,栗子坪、 双桥和田坝对应层位样品的 TOC 含量基本相同。

表 2 南大巴山五峰组—龙马溪组泥岩微量元素分析结果(μg/g)及其比值

Table 2Trace elements and their ratios of mudstones of Wufeng Formation and Longmaxi Formation in southernDaba Mountain

样品	地层	V	Cr	Co	Ni	Cu	Mo	Th	U	V/(V+Ni)	U/Th	V/Cr	Ni/Co	U/Mo	Uau	δU
S14		245	51.3	2.06	37.7	9.14	26.3	10.2	22.9	0.87	2.25	4.78	18.30	0.87	19.50	1.74
S13		210	41.3	0. 841	30.5	6.24	18.4	6.63	10. 8	0.87	1.63	5.08	36.27	0. 59	8.59	1.66
S12		428	46.2	0. 669	80	6	106	10.3	17.5	0.84	1.70	9.26	119. 58	0.17	14.07	1.67
S11		246	49.8	4.01	99.1	113	34.9	11	17.1	0.71	1.55	4.94	24.71	0.49	13.43	1.65
S10	77.17	69	13.8	5.6	50.2	40.3	20.3	3.19	5.14	0. 58	1.61	5.00	8.96	0.25	4.08	1.66
S9	双桥	52	22.5	0. 876	12.2	6.27	10.2	7.74	10.8	0.81	1.40	2.31	13.93	1.06	8.22	1.61
S8	70 JOC-11	132	46.3	1.15	20	10.5	23.5	10.4	7.96	0.87	0.77	2.85	17.39	0.34	4.49	1.39
S7		226	37.8	0.38	35.9	5.5	31.6	5.6	9.2	0.86	1.64	5.98	94.47	0.29	7.33	1.66
S6		228	44.3	0. 798	43.2	10.4	46.5	8.22	14.7	0.84	1.79	5.15	54.14	0.32	11.96	1.69
S5		423	61	0. 648	67.2	9.7	73.6	9.23	21.2	0.86	2.30	6.93	103.70	0.29	18.12	1.75
S4		212	64.1	1.91	68.4	19.7	19	8.94	6.48	0.76	0.72	3.31	35.81	0.34	3.50	1.37
S3	双桥	94. 9	72.8	12.4	49.8	211	0.606	24. 2	2.34	0.66	0.10	1.30	4.02	3.86	-5.73	0.45
S1	临湘组	87	61.7	17.2	51.1	41	0.237	21.4	1.79	0.63	0.08	1.41	2.97	7.55	-5.34	0.40

沉积与特提斯地质

续表2																
SH18		239	84.9	15	79.6	54.5	15.2	16.1	8.05	0.75	0.50	2.82	5.31	0.53	2.68	1.20
SH17		134	73.5	18.3	116	57.2	36.5	16.5	12	0.54	0.73	1.82	6.34	0.33	6.50	1.37
SH16		261	85.8	13.8	71.8	55.2	14.1	16.1	8.07	0. 78	0.50	3.04	5.20	0.57	2.70	1.20
SH15	栗子坪	336	67.2	5.41	50.7	18	14.6	14.4	9.68	0.87	0.67	5.00	9.37	0.66	4.88	1.34
SH14	龙马溪组	135	81.9	6. 98	25.8	38.4	22	17.5	12.6	0.84	0.72	1.65	3.70	0.57	6.77	1.37
SH13		126	66	4.62	14.7	14.6	38.8	18.9	15.2	0.90	0.80	1.91	3.18	0.39	8.90	1.41
SH12		139	73.9	2.29	16.1	18.6	26.9	18.3	11.6	0.90	0.63	1.88	7.03	0.43	5.50	1.31
SH11		136	70.2	6.71	24.9	34.3	28.7	17.2	13.3	0.85	0.77	1.94	3.71	0.46	7.57	1.40
SH10		142	72.9	10.2	28.7	34.2	32.7	19.2	18.4	0.83	0.96	1.95	2.81	0.56	12.00	1.48
SH9		91	53	7.72	32.7	28.2	17.7	15.7	7.62	0.74	0.49	1.72	4.24	0.43	2.39	1.19
SH8		86.5	46.5	9.96	34.9	40.7	13.6	14.7	10.2	0.71	0. 69	1.86	3.50	0.75	5.30	1.35
SH7		99.3	53.3	11	45.2	42.8	15.7	14.3	8.62	0. 69	0.60	1.86	4.11	0.55	3.85	1.29
SH6	栗子	246	41.9	4.09	125	101	36.9	9.34	15.9	0.66	1.70	5.87	30.56	0.43	12.79	1.67
SH5	坪五峰组	261	65.4	2.55	74.8	65.4	20.2	9.28	7.67	0.78	0.83	3.99	29.33	0.38	4.58	1.43
SH4		158	42.9	6.06	93.9		15.4	7.44	6.26	0.63	0.84	3.68	15.50	0.41	3.78	1.43
SH3		226	53.8	6.21	94.3	55.7	33.8	10.2	9.64	0.71	0.95	4.20	15.19	0.29	6.24	1.48
SH2		634	62.1	1.7	56.3	25.9	39.5	7.92	9.8	0. 92	1.24	10.21	33.12	0.25	7.16	1.58
SH1	_	896	82.2	2.34	60	34.1	35.1	8.1	9.7	0. 94	1.20	10.90	25.64	0.28	7.00	1.56
SH3	栗子坪	85.5	60.3	17.2	49.9	185	0.286	19.9	1.9	0.63	0.10	1.42	2.90	6.64	-4.73	0.45
SH2	临湘组	103	60.4	21.4	53.7	33.6	0.32	22.4	1.98	0.66	0.09	1.71	2.51	6.19	-5.49	0.42
SH1		85.9	48.8	16.8	46.9	21.4	0. 285	19.4	1.46	0.65	0.08	1.76	2.79	5.12	-5.01	0.37
YP23		162	96.3	5.38	47.6	31.69	2.029	16.5	5.8	0.77	0.35	1.68	8.85	2.86	0.30	1.03
YP22		165	94.4	4.68	49.3	23.77	3.232	17	6.44	0.77	0.38	1.75	10.53	1.99	0.77	1.06
YP21		128	70.9	6.65	43.3	34.36	4.615	13.4	3.13	0.75	0.23	1.81	6.51	0.68	-1.34	0.82
YP20		216	55.9	2.16	33.5	23.86	10.64	13.5	8.62	0.87	0.64	3.86	15.51	0.81	4.12	1.31
YP19		245	67.5	2.86	35.8	10.42	12.93	15.9	8.04	0.87	0.51	3.63	12.52	0.62	2.74	1.21
YP18		318	74.2	7.84	72.3	33.20	13.502	16.5	9.12	0.81	0.55	4.29	9.22	0.68	3.62	1.25
YP17		299	54.6	1.1	27.3	12.82	5.777	13.5	6.3	0. 92	0.47	5.48	24.82	1.09	1.80	1.17
YP16		269	68.1	3.13	57.9	13.98	18.82	17.8	12.5	0.82	0.70	3.95	18.50	0.66	6.57	1.36
YP15		592	46	2.66	69	11.75	10.64	12	12.8	0.90	1.07	12.87	25.94	1.20	8.80	1.52
YP14-2	田切龙	316	36.9	0. 597	7.98	20.03	8.003	19.1	22.8	0. 98	1.19	8.56	13.37	2.85	16.43	1.56
YP14-1	山灰龙 马溪组	226	49.8	0. 597	13.4	44.33	2.242	11.8	7.68	0.94	0.65	4.54	22.45	3.43	3.75	1.32
YP14	J.C.II	252	49	1.05	35.5	42.20	7.357	10.1	7.5	0.88	0.74	5.14	33.81	1.02	4.13	1.38
YP13		174	62.8	14	104	58.31	13.50	15.1	12.4	0.63	0.82	2.77	7.43	0.92	7.37	1.42
YP12		273	65.7	15.6	123	50.65	17.02	15.2	13.1	0.69	0.86	4.16	7.88	0.77	8.03	1.44
YP11		147	60.3	17.3	97.1	66.85	13.58	14.5	12.9	0.60	0.89	2.44	5.61	0.95	8.07	1.45
YP10		176	56.6	7.45	63.4	24.93	15.30	11.9	8.59	0.74	0.72	3.11	8.51	0.56	4.62	1.37
YP9		157	61.5	0.722	17.7	6.23	14.16	13.6	9.02	0.90	0.66	2.55	24. 52	0.64	4.49	1.33
YP8		116	31.3	0.329	26.2	5.27	31.83	12.1	8.99	0.82	0.74	3.71	79.64	0.28	4.96	1.38
YP7		159	34	0.424	39	36.23	16.86	11.8	11.5	0.80	0.97	4.68	91.98	0.68	7.57	1.49
YP6		189	35.3	0.371	36.9	59.29	9.083	7.18	13.6	0.84	1.89	5.35	99.46	1.50	11.21	1.70
YP5		614	57.4	0.743	87.3	10.77	47.136	10.9	29.7	0. 88	2.72	10. 70	117.50	0.63	26.07	1.78
YP4		129	17.5	0. 184	15.2	10.95	1.498	1.22	1.96	0. 89	1.61	7.37	82.61	1.31	1.55	1.66
YP3	田坝	72.4	28.9	0.247	10.9	17.54	0. 749	6	3.6	0.87	0.60	2.51	44.13	4.81	1.60	1.29
YP2	五峰组	280	119	1.23	67.4	26.08	1.768	15.6	7.29	0.81	0.47	2.35	54.80	4.12	2.09	1.17
YP1		167	102	1.45	35.7	16.82	0. 941	22.6	5.35	0.82	0.24	1.64	24.62	5.68	-2.18	0.83

407

				表3	3 南:	大巴山	五峰组	且—龙	马溪组	1泥岩和	希土元	素分析	斤结果	(µg⁄g)				
Table 3	3 Analy	ysis re	sults o	f REE	ls of n	iudsto	nes of	Wufe	ng For	matio	n and	Longn	naxi F	ormati	ion in	southe	ern Dab	a Mo	untain
样品	地层	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y	Σree	δEu	δCe
S14		41.3	61.1	9.19	36.9	6.43	0. 98	5.40	0.88	4.67	0.99	2.47	0.44	2.85	0.43	31.5	174.03	0.76	0.74
S13		28.8	45.3	5.70	20.6	2.82	0.43	2.18	0.37	1.99	0.46	1.52	0.23	1.69	0.22	14.7	112.31	0.80	0. 83
S12		32.5	51.7	6.65	24.2	3.28	0.47	2.70	0.36	2.49	0.52	1.44	0.27	1.70	0.25	16.9	128. 52	0.72	0.83
S11		34.6	55.7	7.66	29.8	5.63	0.80	5.18	0.87	5.27	1.06	3. 19	0.53	3.54	0.57	35.5	154.40	0.67	0.81
S10		13.3	22.4	2.76	11.1	2.05	0.49	2.46	0.40	2.14	0.53	1.56	0.25	1.83	0.23	18.9	61.49	0. 99	0.87
S9	双桥	22.8	41.7	4.91	17.7	2.62	0.34	2.08	0.36	2.01	0.49	1.41	0.27	1.80	0.19	12.3	98.68	0.66	0.93
S 8	龙马溪组	35.2	57.7	7.03	24.9	3.23	0.46	2.46	0.40	2.60	0.53	1.68	0.30	1.94	0.27	15.9	138.71	0.75	0.86
S7		24.3	44.2	4.78	17.5	2.39	0.34	1.91	0.32	1.71	0.37	1.03	0.22	1.51	0.17	11.8	100.75	0.73	0.97
56		25.3	43.2	5.06	18.5	2.74	0.44	2.29	0.39	2.63	0. 52	1.44	0. 22	1.57	0. 22	16.2	104. 52	0.80	0. 90
55		29.7	47.5	6.32	23.4	3. 59	0.57	2.92	0.49	2.76	0.58	1.72	0.27	1.82	0. 29	18.2	121.93	0.80	0.82
S4		29.8	43.1	5.38	18.1	2.42	0.42	2.15	0.40	2.72	0.63	2.10	0.34	2.44	0.36	21.2	110.36	0.84	0.80
S3	マロ林氏	55.2	118 0	12.50	46.8	7.61	1.04	5 94	0.97	5 35	1.01	2.89	0.45	3 35	0.41	26.3	261 51	0.71	1.06
S1	临湘组	46.0	100.0	10.80	39.5	5.99	0.83	4. 58	0.73	3.93	0.82	2.15	0.37	2,40	0.35	19.0	218.44	0.72	1.06
SH18		43.4	76.2	9.62	36.2	5.79	0.85	4.46	0.79	4.14	0. 84	2. 29	0.43	2.60	0.36	22.0	187.96	0.77	0. 88
SH17		48.9	88.3	10. 80	39.8	6.39	0.97	5.74	0.90	5.17	1.00	2.85	0.42	3.31	0.42	29.2	214.96	0.73	0.91
SH16		44.9	75.8	9.49	35.3	5.58	0.86	4.69	0.70	4.19	0. 79	2.30	0.38	2.41	0.33	21.8	187.73	0.77	0.87
SH15	栗子坪	41.1	65.4	8.25	30.6	4.68	0.80	4.00	0.67	4.41	0.83	2.18	0.39	2.82	0.36	23.2	166. 50	0.85	0.84
SH14	龙马溪组	157.2	100.0	12.40	44.2	5.76	2.00	4. 52	0.80	5.62	1.20	3.15	0.50	3.62	0.44	32.2	241.41	1. 79	0.88
SH13		69.1	124.0	15.40	53.4	6.77	0.79	6.41	1.30	8.09	1.60	4.99	0.77	5.55	0.66	46.2	298.83	0.55	0.90
SH12		51.7	91.7	11.50	40.9	5.44	0.59	4.12	0.76	4.43	0.95	2.93	0.46	3.42	0.46	27.7	219.37	0.57	0. 89
SH11		61.8	110.0	13.70	49.2	7.23	3.24	6.07	1.11	6.33	1.23	3.70	0.61	4.61	0.53	36.0	269.36	2.24	0. 89
SH10		53.3	91.9	11.70	41.9	5.36	0.78	4.74	0.87	5.79	1.03	3.26	0.48	3.70	0.43	31.9	225.25	0.71	0.87
SH9		41.6	68.5	8.51	32.2	5.03	0.69	3.73	0.67	3.56	0.69	2.06	0.34	2.49	0.28	19.6	170.35	0.73	0.86
SH8		39.8	67.0	8.63	33.7	6.05	1.03	5.48	0.81	5.14	0.88	2.54	0.36	2.60	0.31	26.7	174.34	0.82	0.85
SH7		38.4	64.6	8.06	30.5	5.09	0.85	4.28	0.71	4.21	0.71	2.09	0.32	2.45	0.32	21.5	162.59	0.83	0.87
SH6	栗子坪	31.0	49.0	6.71	25.6	4.91	0.71	4.84	0.80	5.12	1.07	3.15	0.52	3.63	0.53	36.3	137.59	0.66	0.80
SH5	五峰组	34.7	49.5	6.51	23.9	3.88	0.58	3.36	0.60	4.18	0.90	2.85	0.44	3.50	0.44	31.6	135.35	0.73	0.78
SH4		23.6	41.8	5.06	19.4	3.53	0.61	3.09	0.56	3.43	0.72	2.12	0.34	2.58	0.34	22.8	107.18	0.85	0.90
SH3		31.4	47.1	6.53	24.5	4.02	0.68	3.69	0.62	4.16	0.79	2.42	0.37	2.97	0.40	27.8	129.64	0.81	0.78
SH2		23.5	39.1	4.82	17.6	2.70	0.37	2.75	0.47	2.60	0.53	1.41	0.25	1.98	0.22	17.4	98.30	0.62	0.87
SH1		30.5	48.6	6.41	23.9	3.86	0.44	3.50	0.58	4.06	0.69	2.07	0.39	2.28	0.32	22. 1	127.59	0.54	0.82
SH3		45.6	100.0	10.60	39.4	6.56	1.03	5.28	0.92	4.91	0.90	2.62	0.37	2.70	0.38	23.0	221.28	0.80	1.07
SH2	果于坪	49.8	107.0	11.50	42.2	6.82	1.03	5.84	0.91	5.03	0.96	2.57	0.49	3.00	0.41	24.5	237.56	0.75	1.05
SH1	临湘组	43.9	91.7	9.80	36.4	5.57	0. 98	4. 93	0.76	4.10	0.86	2.22	0.40	2.68	0.34	22.7	204.63	0.85	1.04
YP23		44.8	86.3	9.75	35.0	5.71	1.03	4.42	0.74	4.37	0. 92	2.93	0.43	2.86	0.44	25.8	199. 70	0.94	0.97
YP22		45.4	86.3	9.61	34.3	5.41	0. 92	4.26	0.73	4.39	0.93	2.85	0.43	3.00	0.42	26.3	198.95	0.88	0.97
YP21		44.0	79.0	9.26	32.9	5.17	0. 98	4.84	0.77	4.58	0.96	2.84	0.41	2.69	0.39	27.1	188. 79	0.90	0.92
YP20	田坝	41.7	78.7	9.17	33.4	6.01	1.08	5.35	0.86	4.83	1.02	2.94	0.43	2.77	0.41	28.7	188.68	0.87	0.95
YP19	龙马溪组	43.2	82.1	9.47	36.9	6. 91	1.17	5.77	0.89	4.76	0. 93	2.65	0.39	2.60	0.37	25.5	198.12	0.85	0.96
YP18		45.1	86.8	10. 20	38.1	6.70	1.14	5.08	0.80	4.40	0.90	2.65	0.40	2.67	0.40	25.0	205.34	0. 89	0.95
YP17		39.9	77.8	9.20	36.4	7.45	1.33	6.14	0.84	4.39	0.80	2.39	0.32	2.19	0.33	20.4	189.48	0.90	0.96
YP16		46.4	85.2	9.56	33.8	5.46	0.84	4.51	0.76	4.26	0.90	2.77	0.41	2.62	0.38	27.0	197.85	0.77	0.95

续表3																			
YP15		37.8	68.5	7.63	26.4	4. 57	0.72	4.34	0.72	4.39	0.92	2.71	0.42	2.61	0.38	28.8	162.10	0.74	0.95
YP14-2		77.9	146.0	17.70	67.1	11.60	1.45	9.38	1.50	8.18	1.60	4.57	0.68	4.44	0.62	43.0	352.71	0.64	0. 93
YP14-1		49.7	91.9	11.30	44.2	8.61	1.51	8.57	1.25	6.22	1.15	2.97	0.42	2.70	0.40	31.5	230. 89	0.80	0.91
YP14		34.3	64.8	7.91	32.2	6.53	1.11	6.20	0.91	4.95	0.94	2.61	0.37	2.17	0.33	27.7	165.32	0.80	0. 93
YP13		42.8	79.9	9.30	34.9	6.31	1.11	5.77	0.90	4.82	1.00	2.78	0.40	2.56	0.38	29.0	192. 93	0.84	0.94
YP12		39.9	74.0	8.34	30.8	5.47	0.96	4.67	0.72	4.13	0.85	2.46	0.37	2.36	0.34	25.9	175.36	0.87	0.96
YP11		46.1	87.5	9.94	37.7	6.89	1.24	6.33	0.92	5.32	1.06	2.92	0.42	2.79	0.40	32.1	209.53	0.86	0.96
YP10		40.1	74.4	8.09	29.1	5.00	0.91	4.42	0.72	4.34	0.89	2.68	0.40	2.49	0.37	26.4	173.89	0.89	0.97
YP9		42.0	77.6	8.30	27.6	3.71	0.52	2.94	0.49	2.99	0.70	1.92	0.31	2.10	0.31	18.3	171.50	0.72	0. 98
YP8		33.1	60.6	6.61	22.7	3.41	0.55	2.85	0.45	2.57	0.55	1.63	0.26	1.73	0.26	17.6	137.26	0.80	0.97
YP7		37.3	66.9	7.53	26.5	4.41	0.70	4.09	0.65	3.75	0.77	2.37	0.35	2.30	0.33	23.7	157.94	0.76	0.94
YP6		23.5	44.0	5.08	19.7	4.06	0.80	3.23	0.54	2.83	0.56	1.65	0.25	1.73	0.24	14.9	108.16	1.01	0.95
YP5	_	37.6	65.0	7.07	26.2	4.64	0.81	4.02	0.66	4.04	0.93	2.80	0.43	2.86	0.39	30.5	157.45	0.85	0.94
YP4		3.9	6.7	0.74	2.7	0.47	0.08	0.41	0.07	0.33	0.07	0.23	0.05	0.30	0.05	2.2	16.05	0.87	0. 92
YP3	田坝	22.9	41.4	4.85	17.3	3.26	0.51	2.34	0.41	2.47	0.54	1.65	0.26	1.65	0.27	11.9	99.80	0.85	0. 93
YP2	五峰组	42.9	72.4	8.94	32.8	5.46	0.79	4.53	0.78	4.87	1.02	3.14	0.47	3.13	0.49	25.0	181.72	0.73	0.87
YP1		52.4	101.0	11.90	44.3	7.59	1.16	5.88	1.00	5.41	1.07	3.30	0.51	3.47	0.51	25.1	239.49	0.79	0. 95

4 讨论

4.1 元素富集因子

田坝五峰组—龙马溪组泥岩 V、Mo、U、Cr 元素 平均页岩的 Al 标准化变化趋势基本一致,Cu、Ni 元 素变化趋势相近,Co 元素除五峰组和龙马溪组底部 与 Cu、Ni 元素差异明显外,龙马溪组中上部变化趋 势大体相似。五峰组—龙马溪组多数样品的 V、 Mo、U 元素富集因子大于1,表明其相比平均页岩较 为富集。五峰组 Cr 元素富集因子大于1,龙马溪组 在1 附近变化,Cu、Ni 元素在五峰组—龙马溪组界 线附近和龙马溪组中部大于1,其余多数样品在1 上下漂移,多数样品的 Co 元素富集因子远低于1, 表明其相对较为亏损,龙马溪组中部大于1(图7)。 图7 中还显示了除 Co 元素外,其他氧化 – 还原敏感 元素在五峰组—龙马溪组界线明显的正异常,可能 与奥陶纪—志留纪之交赫兰特冰川消融,引起全球 海平面快速上升有关。

图7 重庆巫溪田坝五峰组—龙马溪组泥岩微量元素 Al 标准化及 TOC 垂向变化

Fig. 7 Vertical changes of TOC and Al-normalized values of trace elements of mudstones of Wufeng Formation and Longmaxi Formation in Tianba profile, Wuxi County, Chongqing

双桥临湘组—龙马溪组泥岩 V、Mo、U、Cr、Ni 元 素平均页岩的 Al 标准化变化趋势基本—致,与 TOC 变化趋势极为相似;Cu、Co 元素变化趋势相近,与前 者变化趋势相反。临湘组所有元素富集因子略低 于1,表明其相比平均页岩亏损,龙马溪组多数样品 的 V、Mo、U 元素富集因子大于1,表明其相对较为 富集,龙马溪组 Cr、Cu、Ni 元素富集因子均在1 左右 轻微波动,而 Co 元素多低于1,表明其相对较为亏 损(图 8)。

栗子坪临湘组—龙马溪组泥岩 V、Mo、U、Cr、 Ni、Cu、Co元素平均页岩的 Al标准化变化趋势基本 一致,表现为由小变大再减小的趋势,与 TOC 变化 趋势极为相似。与双桥临湘组不同,该剖面临湘组 所有元素富集因子略高于 1,表明其相比平均页岩 富集,五峰组—龙马溪组样品的 V、Mo、U 元素富集 因子大于 1,表明其相对较为富集,而 Co元素多低 于 1,表明其相对较为亏损;五峰组下部 Cr、Cu、Ni 元素富集因子大于 1,五峰组上部和龙马溪组在 1 左右小幅振荡(图 9)。

在氧化 - 次氧化的海水环境中 U、V 和 Mo 不会 富集,缺氧的条件下 U 和 V 富集,而在硫化(含溶解 的硫化氢)的沉积环境中 U、V 和 Mo 在沉积物中都 会强烈的富集(Algeo and Maynard,2004;常华进等, 2009)。栗子坪、双桥和田坝五峰组—龙马溪组泥 岩U、V和Mo元素均较为富集,表明沉积时处于缺 氧环境之中;田坝早志留世初期和中期龙马溪组泥 岩U、V和Mo元素表现为异常富集,双桥早志留世 早期和晚期龙马溪组泥岩也发生了两次明显的异 常富集,而栗子坪五峰组早期泥岩显示为强烈富 集,表明为硫化缺氧沉积环境(图7,图8和图9)。

4.2 氧化 – 还原环境

U、V、Mo、Cr、Co这些氧化 – 还原敏感元素在沉积环境中表现为氧化条件下易溶,还原条件下不溶,贫氧条件下自生富集,U、V、Mo元素沉积浓度变化可推测过去底层水氧气含量,常用作判断氧化 – 还原环境的指标(Dean et al., 1997; Crusius et al., 1996; Tribovillard et al., 2006)。相比其他氧化 – 还原敏感元素,Cr、Co元素易受陆源碎屑强烈的影响,古氧化 – 还原环境判断时会受到一定局限,Mo元素在还原条件下最富集(Crusius et al., 1996),尤其是局限(封闭)沉积环境中(Algeo and Maynard, 2004; Algeo et al., 2007)。微量元素的氧化 – 还原环境分析应采用一组元素指标,而不是单个元素指标,尤其是选择那些很少受原始和次生变化影响的元素,如U、V、Mo、Ni和Cu等(Tribovillard et al., 2006),这些特定的微量元素组合及其比值常被用于判断沉

Fig. 8 Vertical changes of TOC and Al-normalized values of trace elements of mudstones of Wufeng Formation and Longmaxi Formation in Shuangqiao profile, Zhuxi County, Hubei

图 9 湖北竹溪栗子坪五峰组—龙马溪组泥岩微量元素 Al 标准化及 TOC 垂向变化

Fig. 9 Vertical changes of TOC and Al-normalized values of trace elements of mudstones of Wufeng Formation and Longmaxi Formation in Liziping profile, Zhuxi County, Hubei

积物氧化 – 还原环境和沉积时底层水体状况。V/ (V+Ni)比值不仅可判断沉积底层水体分层强弱, 比值 >0.84 代表水体分层强,0.6~0.84 之间表明 分层中等,0.4~0.6 之间分层弱;还可以和 U/Th、 V/Cr、Ni/Co、Uau 及 δU 比值等来判断底层水体氧 化-还原环境(Hatch and Leventhal,1992;Jones and Manning,1994;吴朝东等,1999;Rimmer,2004;熊国 庆等,2008)(表4)。

沉和环境判别会粉	缺氧	〔环境	官気环培	出田文書
加松叶境州加参数	厌氧	贫氧	苗利小児	引用文献
V/(V + Ni)	>0.84	0.60~0.84	< 0.60	Hatchand Leventhal, 1992; Rimmer, 2004
U/Th	>1.25	0.75 ~1.25	< 0.75	
V/Cr	>4.25	2.0~4.25	<2.0	Jonesand Manning, 1994
Ni/Co	>7.0	5.0~7.0	< 5.0	
Uau(µg∕g)	>12.0	5.0 ~ 12.0	< 5.0	早胡左笙 1000
δU	:	>1	< 1	天初小寸,1777
δCe	δCe <1			Wright et al, 1987; German et al., 1991

表 4 氧化 – 还原环境的微量元素判别参数 Table 4 Parameters of trace elements used for determining redox conditions

Ce的存在形式主要受氧化还原条件影响,在氧 化条件下,Ce³⁺被氧化成 Ce⁴⁺,由于 Ce⁴⁺在水中溶 解度很小,造成海水中 Ce 相对亏损,形成 Ce 负异 常,沉积物中 Ce 则表现为 Ce 正异常或者无明显负 异常;反之,沉积物中 Ce 亏损,出现 Ce 负异常。因 此沉积物中 Ce 异常反映了其氧化 - 还原条件 (Wright et al., 1987;German et al., 1991)。大洋中 随着水体深度增加,溶氧量逐渐降低,Ce 异常发生 规律性变化,从而指示海平面升降的变化(张琴等, 2018),由此 Ce 变化还可以定量揭示海平面的变化 (Wilde et al., 1996;冯洪真等,2000)。 田坝泥岩 V/(V+Ni)比值和 Ni/Co 比值表明 其沉积时为中等分层贫氧-强分层厌氧环境,五峰 组—龙马溪组底部和龙马溪组中上部为强分层厌 氧环境,龙马溪组中部和顶部为中等分层贫氧环 境。U/Th 比值和 Uau 显示了贫氧-富氧环境,以 富氧环境为主,五峰组顶部—龙马溪组底部为厌氧 环境,龙马溪组中部为贫氧环境。V/Cr 比值除五峰 组底部和龙马溪组顶部显示为富氧环境外,其余样 品与 V/(V+Ni)比值和 Ni/Co 比值所反映沉积环 境一致。多数样品的 δU 比值均大于1,表明仍以缺 氧环境为主,所有样品的 δCe 比值低于1,也反映了 缺氧环境(图10)。

双桥泥岩 V/(V+Ni)比值和 Ni/Co 比值表明 其沉积时为中等分层贫氧-强分层厌氧环境,龙马 溪组下部和龙马溪组顶部为强分层厌氧环境,其余 为中等分层贫氧环境。临湘组 U/Th 比值、V/Cr 比 值和 Uau 显示了富氧环境,龙马溪组总体为贫氧-厌氧环境,以厌氧环境为主,少数为富氧环境。临 湘组 δU 比值低于 1,δCe 比值大于 1,表明为富氧环 境。龙马溪组所有样品的 δU 比值低于 1,δCe 比值 低于 1,均反映为缺氧环境(图 11)。

图 10 重庆巫溪田坝五峰组—龙马溪组泥岩氧化 - 还原环境与海平面变化

Fig. 10 Sea level changes and redox environments of mudstones of Wufeng Formation and Longmaxi Formation in Tianba profile, Wuxi County, Chongqing

Fig. 11 Sea level changes and redox environments of mudstones of Wufeng Formation and Longmaxi Formation in Shuangqiao profile, Zhuxi County, Hubei

图 12 湖北竹溪栗子坪五峰组—龙马溪组泥岩氧化 - 还原环境与海平面变化

Fig. 12 Sea level changes and redox environments of mudstones of Wufeng Formation and Longmaxi Formation in Liziping profile, Zhuxi County, Hubei

栗子坪泥岩 V/(V + Ni)比值表明其沉积时为 中等分层贫氧-强分层厌氧环境,五峰组底部和五 峰组顶部—龙马溪组底部为强分层厌氧环境,其余 为中等分层贫氧环境。U/Th 比值、V/Cr 比值、Ni/ Co 比值和 Uau 反映出的氧化-还原状况基本一致, 临湘组为富氧环境,五峰组底部为厌氧环境,其余 为贫氧-富氧环境。临湘组 δU 比值低于 1,δCe 比 值大于 1,表明为富氧环境。五峰组—龙马溪组所 有样品的 δU 比值低于 1,δCe 比值低于 1,均反映为 缺氧环境(图 12)。

田坝、双桥和栗子坪五峰组—龙马溪组泥岩的 氧化-还原元素比值自下而上均表现出两次由贫 氧-厌氧-贫氧的环境变化,而栗子坪龙马溪组底 部这种变化不明显,两次变化与δCe反映出的海平 面升降变化大体一致(图10),表明五峰组—龙马溪 组泥岩沉积环境主要受海平面升降变化影响,五峰 期和龙马溪早期,海平面上升,尽管南大巴山与北 侧古秦岭洋盆连通,但沉积水体主体处于缺氧,局 部硫化的滞留局限环境,此后海平面开始下降,氧 化-还原界面向下迁移,沉积水体变为贫氧;龙马 溪中期,再次发生海平面小幅上升,水体状况又返 回缺氧;龙马溪晚期,水体变浅,氧化性逐渐增强 (熊小辉等,2015)。

4.3 底层水体状况

沉积物中 Mo/TOC 比值与海水中 Mo 元素的浓度有一定的对应关系,沉积物中 Mo/TOC 比可大致

反映沉积水体中的 Mo 浓度。在水体还原性强的厌 氧环境中,硫酸盐易还原成硫化氢,也利于有机质 保存,促使 Mo 元素富集在沉积物中,而海水中相对 亏损,因而 Mo/TOC 比值可用于判定同时代不同古 地理条件下沉积水体的局限程度(Algeo and Lyons, 2006;Algeo et al., 2007; Rowe et al., 2008;李艳芳 等,2015b)。

图 13 南大巴山五峰组—龙马溪组泥岩 TOC 与 Mo 相关性 Fig. 13 Relevance of TOC and Mo of mudstones of Wufeng Formation and Longmaxi Formation in southern Daba Mountain

由于海水 Mo-U 浓度、水体氧化还原状态、水体 中颗粒物质运移及水体化学性质变化等因素共同 控制沉积物的 Mo-U 富集程度。U 在 Fe(III)-Fe (II)还原带活化并向沉积物中转移,而 Mo 仅当海 水中含有 H_2S 时才向沉积物富集。因而,元素 Mo 和 U 富集系数(Mo_{EF} 和 U_{EF})的协变模式被用来判断 海洋水体氧化 – 还原状况,恢复地史时期古海洋沉 积环境(Algeo and Tribovillard, 2009; Shen et al., 2013;李艳芳等,2015b);还可用于评价海盆的水体 滞留情况,有效区分盆地的局限程度(Algeo and Tribovillard,2009; Tribovillard et al., 2012)。

氧化-还原敏感元素特征显示,南大巴山五峰 组、龙马溪组黑色页岩沉积于贫氧-厌氧环境。田 坝五峰组 TOC 含量普遍较低,低于 2%, Mo 含量也 不高,普遍不到 2µg/g, Mo/TOC 介于 0.34~4.27, 均小于强滞留环境黑海的 Mo/TOC = 4.5, 这与沉积 时田坝处于局部隆起后侧的高部位有关;栗子坪 TOC 均大于 2%, 最高可达 6.21%, Mo 含量为 13.6 ~39.5µg/g, Mo/TOC 比值普遍大于 5, 在 3.6~ 8.56 之间变化,处于强滞留黑海(Mo/TOC = 4.5)和 挪威 Framvarent 峡湾(Mo/TOC = 9)之间。龙马溪 组 TOC 含量基本都大于 2%, Mo 含量也基本大于 10µg/g,双桥最高达106µg/g,普遍在10~40µg/g。 其中田坝 Mo/TOC 较低,为2.08~6.23,基本在强 滞留黑海 Mo/TOC = 4.5 附近, 栗子坪和双桥 Mo/ TOC 最低 4.4, 最高为 14.78, 普遍在 5~10, 落在强 滞留黑海 (Mo/TOC = 4.5) 和挪威 Framvarent 峡湾 (Mo/TOC = 9)之间(图 13)。这些特征表明南大巴 山中部田坝五峰组、龙马溪组形成于水体局限程度 较高的强滞留环境,东段栗子坪和双桥则处于水体 半局限、中等滞留的沉积环境;垂向上,五峰组沉积 水体较龙马溪组更为局限、滞留程度更高,川西南 长宁和南川三泉五峰组、龙马溪组 Mo/TOC 也显示 了类似的结果(李艳芳等,2015b;何龙等,2019)。

图 14 南大巴山五峰组—龙马溪组泥岩 U_{EF}与 Mo_{EF}相关性 Fig. 14 Relevance of U_{EF} and Mo_{EF} of mudstones of Wufeng Formation and Longmaxi Formation in southern Daba Mountain

南大巴山不同剖面的 MoFF-UFF 的协变模式所反 映的情况更为复杂。双桥龙马溪组 Mo_{FF}/U_{FF}比值 处于1.34~8.62之间,平均4.11,形成于中等滞留 缺氧 - 硫化水体;栗子坪五峰组—龙马溪组 Morr/ U_{FF}比值变化不大,介于 1.09~5.74 之间,平均 3.38,为弱滞留贫氧-中等滞留缺氧环境;田坝五峰 组和龙马溪组 Mo_{EF}/U_{EF}比值变化较大,五峰组为 0.3 和1.09, 沉积于中等滞留的贫氧-缺氧环境, 龙 马溪组 Mo_{FF}/U_{FF}比值在 0.42~5.04 之间变化,平 均1.78,处于弱滞留贫氧-中等滞留缺氧水体(图 14)。栗子坪五峰组--龙马溪组趋向于颗粒载体, 表明可能金属氢氧化物颗粒载体促使水中的 Mo 更 快地进入沉积物中(Algeo and Tribovillard, 2009; Tribovillard et al., 2012),这种现象在川西南并未见 到(李艳芳等,2015b),可能主要与南大巴山所处扬 子北缘的构造部位有关,南秦岭陆缘裂谷会产生大 量的金属矿物质,快速海侵过程中洋流将这些金属 颗粒携带到扬子北缘大巴山地区(图14),这与剖面 龙马溪组部分样品的正 Eu 异常所反映存在的热液 活动一致。

总之,栗子坪、田坝和双桥五峰组-龙马溪组 主体上处于弱滞留贫氧 - 中等滞留缺氧的开阔海 环境。横向上,从田坝、栗子坪到双桥,沉积环境从 贫氧、缺氧到硫化环境转变;从栗子坪、田坝到双 桥,沉积水体从弱滞留变化为中等滞留局限环境, 这种差异与不同剖面所处的古海底地形有关(熊国 庆等,2017a)。相比之下,区内白鹿五峰组—龙马 溪组和川南五峰组、龙马溪组富有机质页岩沉积水 体更为硫化、更为滞留(李艳芳等,2015b;刘田等, 2019),栗子坪和田坝五峰组-龙马溪组与川南龙 马溪组贫有机质页岩和南川三泉五峰组—龙马溪 组一样,处于贫氧-缺氧环境,但川南龙马溪组贫 有机质页岩滞留程度更高。这种氧化 - 还原环境 和底层水体状况的变化主要受控于海平面升降变 化,与华南上扬子海五峰组-龙马溪组转换过程-致,但南大巴山北侧古秦岭开阔洋盆的洋流作用将 会某种程度上影响该地区五峰组—龙马溪组沉积。

5 结论

(1)南大巴山临湘组 Al₂O₃含量变化较大,双桥 明显高于栗子坪;龙马溪组较五峰组更高,总体上 表现向上逐渐增加的趋势,TiO₂含量变化与Al₂O₃相 似,两者与样品TOC含量呈负相关。

(2)五峰组—龙马溪组氧化 - 还原敏感元素 U、V和 Mo元素均较为富集,表明沉积时处于缺氧 环境;存在两次明显的元素异常富集,显示为硫化 环境,田坝为五峰末期 - 龙马溪初期和龙马溪中 期,双桥为龙马溪早期和晚期,栗子坪处于五峰早 期和龙马溪早期。

(3)稀土元素均表现为轻稀土富集、重稀土亏 损,略微右倾的稀土元素配分模式。临湘组 Ce 略 显正异常,五峰组—龙马溪组均呈现 Ce 负异常,表 明临湘期富氧,五峰期 – 龙马溪期缺氧;栗子坪明 显 Eu 负异常,少数 Eu 正异常表明包括南大巴山可 能存在同期的海水热液活动,这种情况与宜昌王家 湾类似。

(4)五峰组—龙马溪组氧化 - 还原敏感元素比 值、Mo/TOC 及 Mo_{EF}-U_{EF}的协变模式揭示了南大巴 山奧陶纪—志留纪之交主体上处于弱滞留贫氧 -中等滞留缺氧的开阔海环境。这种氧化 - 还原环 境和底层水体状况的变化与华南上扬子海五峰 组—龙马溪组基本一致,主要受控于海平面升降变 化和沉积时古海底地形,局部还与秦岭洋热液活动 有关。

致谢:野外期间得到了江新胜研究员和闫剑飞 博士的大力支持和帮助,在此深表谢意。

参考文献(References):

- Algeo T J, Lyons T W, Blakey R C, et al., 2007. Hydrographic conditions of the Devono Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships [J]. Palaeogeography Palaeoclimatology Palaeoecology, 256(3-4): 204 -230.
- Algeo T J and Lyons T W, 2006. Mo-total organic carbon covariation in modern an oxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 21(PA1016), 25.
- Algeo T J and Maynard J B, 2004. Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 206(3-4): 289-318.
- Algeo T J and Tribovillard N, 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation [J]. Chemical Geology, 268(3-4): 211-225.

Brenchley P J, Garden G A F, Marshall J D, et al., 1995.

Environmental changes associated with the first strike of the Late Ordovician mass extinction [J]. Modern Geology, 20(1): 69 – 82.

- Chen X, Rong J Y, Li Y, et al., 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition [J]. Palaeogeography Palaeoclimatology Palaeoecology, 204(4) 353 – 372.
- Crusius J, Calvert S, Pedersen T, et al., 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic, and sulfidic conditions of deposition [J]. Earth and Planetary Science Letters, 145(1-4); 65-78.
- Dean W E, Gardner J V, Pipers D Z, et al., 1997. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin [J]. Geochimica et Cosmochimica Acta, 61 (21): 4507 - 4518.
- Delabroye A and Vecoli M, 2010. The end-Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy[J]. Earth Science Reviews, 98(3 – 4): 269 – 282.
- Fan J X, Peng P A, Melchin M J, et al.,2009. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China [J]. Palaeogeography Palaeoclimatology Palaeoecology, 276 (1-4): 160-169.
- German C R, Holliday B P, Elderfield H, et al.,1991. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea [J]. Geochimica et Cosmochimica Acta, 55(12): 3533 – 3558.
- Hatch J R and Leventhal J S, 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the upper Pennsylvanian (Missourian) Stark shale member of the Dennis limestone, Wabaunsee county, Kansas, U. S. A [J]. Chemical Geology, 99(1-3): 65-82.
- Herrmann A D, Macleod K G, Leslie S A, et al., 2010. Did a volcanic mega eruption cause global cooling during the late Ordovician? [J]. Palaios, 25(12): 831-836.
- Jin J S, Zhan R B, Wu R C, et al., 2018. Equatorial cold-water tongue in the Late Ordovician[J]. Geology, 46(9): 759-762.
- Jones B G, Fergusson C L, Zambelli P F, et al., 1993. 东澳大利亚拉 克兰褶皱带奥陶系等深积岩.//姜衍文, 吴智勇, 王泽中, 主 编. 深海等深流沉积研究进展[M]. 西安: 西北大学出版社, 155-166.
- Jones B and Manning D A C, 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 111(1-4): 111-129.
- Klinkhammer, G, Elderfield H, Hudson A, et al., 1983. Rare earth elements in seawater near hydrothermal vents [J]. Nature, 305 (5931), 185 – 188.
- Marshall J D, Brenchley P J, Mason P, et al., 1997. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician [J]. Palaeogeography Palaeoclimatology Palaeoecology, 132(1): 195 – 210.

- Munnecke A, Calner M, Harper D A T, et al., 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis [J]. Palaeogeography Palaeoclimatology Palaeoecology, 296: 389 -413.
- Owen A W and Robertson D B R, 1995. Ecological changes during the end-Ordovidan extinction [J]. Modern Geology, 20(1): 21 39.
- Rimmer S M, 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian basin(USA) [J]. Chemical Geology, 206:373 - 391.
- Rowe H D, Loueks R G, Ruppel S C, et al., 2008. Mississippian Barnett Formation, Fort Worth basin, Texas: bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction [J]. Chemical Geology, 257(1-2): 16-25.
- Scotese C R and McKerrow WS, 1991. Ordovician plate tectonic reconstructions [M]. In: Barnes CR, Williams SH (Eds.), Advances in Ordovician geology. Geological Survey of Canada, Paper, 90(9): 271-282.
- Sheehan P M, 1973. The relation of late Ordovician glaciation to the Ordovicia-Silurian changeover in North American brachiopod faunas [J]. Lethaia, 6: 147 – 154.
- Shen J, Algeo T J, Feng Q L, et al., 2013. Volcanically induced environmental change at the Permian-Triassic boundary (Xiakou, Hubei Province, South China): Related to West Siberian coal-field methane releases? [J]. Journal of Asian Earth Sciences, 75: 95 – 109.
- Smolarek J, Marynowski L, Trela W, et al., 2017. Redox conditions and marine microbial community changes during the end-Ordovician mass extinction event [J]. Global and Planetary Change, 149: 105 -122.
- Tribovillard N, Algeo T J, Baudin F, et al., 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoeeanography[J]. Chemical Geology, 324:46-58.
- Tribovillard N, Algeo T J, Lyons T, et al., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 232(1-2): 12-32.
- Wang K, Chatterton B D E, Wang Y, et al., 1997. An organic carbon isotope record of late Ordovician to early Silurian marine sedimentary rocks, Yangtze sea, South China: Implications for CO₂ changes during the Hirnantian glaciations [J]. Palaeogeography Palaeoclimatology Palaeoecology, 132(1-4): 147-158.
- Wang K, Orth C J, Attrep Jr. M, et al., 1993. The great latest Ordovician extinction on the South China plate: Chemostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtze platform [J]. Palaeogeography Palaeoclimatology Palaeoecology, 104 (1-4): 61-79.
- Wedepohl K H, 1991. Chemical composition and fractionation of the continental crust[J]. Geologische Rundschau, 80(2): 207-223.
- Wilde P, Quinby-Hunt M S, Erdtmann B D, et al., 1996. The whole-

rock cerium anormaly: A potential indicator of eustatic sea-level changes in shale of the anoxic facies [J]. Sedimentological Geology, 101: 43 – 53.

- Wright J, Schrader H, Holser W T, et al., 1987. Paleoredox Variations in ancient oceans recorded by rare earth elements in fossil apatite [J]. Geochimica Cosmochimica Acta, 51(3): 631-644.
- Yan D T, Chen D Z, Wang Q C, et al., 2012. Predominance of stratified anoxic Yangtze sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 291: 69 -78.
- Yan D T, Chen D Z, Wang Q C, et al., 2008. Environment redox changes of the ancient sea in the Yangtze area during the Ordo-Silurian transition[J]. Acta Geological Sinica(English edition), 82 (3): 679-689.
- Zhou L, Algeo T J, Shen J, et al., 2015. Changes in marine productivity and redox conditions during the late Ordovician Hirnantian glaciation [J]. Palaeogeography Palaeoclimatology Palaeoecology, 420: 223 -234.
- 常华进,储雪蕾,冯连君,等,2009. 华南老堡组硅质岩中草莓状黄铁 矿-埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报,25:1001 -1007.
- 陈旭,陈清,甄勇毅,等,2018.志留纪初宜昌上升及其周缘龙马溪组 黑色笔石页岩的圈层展布模式[J].中国科学(D辑:地球科 学),48:1198-1206.
- 陈旭,戎嘉余,樊隽轩,等,2000. 奧陶 志留系界线地层生物带的全 球对比[J].古生物学报,39(1):100-114.
- 陈旭,肖承协,陈洪冶,等,1987. 华南五峰期笔石动物群的分异及缺 氧环境[J]. 古生物学报,26(3):326-338.
- 樊隽轩, MelchinMJ, 陈旭, 等, 2012. 华南奧陶 志留系龙马溪组黑色 笔石页岩的生物地层学[J]. 中国科学(D辑: 地球科学), 42 (1):130-139.
- 冯洪真, ErdtmannBD, 王海峰, 等, 2000. 上扬子区早古生代全岩 Ce 异常与海平面长缓变化[J]. 中国科学(D辑), 30(1):66-72.
- 何龙,王云鹏,陈多福,等,2019.重庆南川地区五峰组—龙马溪组黑
 色页岩沉积环境与有机质富集关系[J].天然气地球科学,30
 (2):203-218.
- 胡艳华,孙卫东,丁兴,等,2009. 奥陶纪—志留纪边界附近火山活动 记录:来自华南周缘钾质斑脱岩的信息[J]. 岩石学报,25(12): 3298-3308.
- 胡艳华,周继彬,宋彪,等,2008. 中国湖北宜昌王家湾剖面奧陶系顶 部斑脱岩 SHRIMP 锆石 U-Pb 定年[J]. 中国科学(D 辑:地球科 学),38(1):72-77.
- 黄志诚,黄钟瑾,陈智娜,等,1991. 下扬子区五峰组火山碎屑岩与放射虫硅质岩[J]. 沉积学报,9(2):1-14.
- 吉让寿,秦德余,高长林,等.东秦岭造山带与盆地[M].西安:西安 地图出版社,1997,45-58.
- 吉让寿,秦德余,高长林,等,1990. 古东秦岭洋关闭和华北与扬子两 地块的拼合[J]. 石油实验地质,12(4):353-365.
- 李朋,何仁亮,宗维,等,2018.鄂西恩施奥陶系-志留系界线附近沉

积地球化学与沉积环境[J].地质科技情报,37(2):17-23.

- 李艳芳,吕海刚,张瑜,等,2015b.四川盆地五峰组—龙马溪组页岩 U
 Mo协变模式与古海盆水体滞留程度的判识[J].地球化学,44(2):109-116.
- 李艳芳,邵德勇,吕海刚,等,2015a.四川盆地五峰组一龙马溪组海相 页岩元素地球化学特征与有机质富集的关系[J].石油学报,36 (12):1470-1483.
- 李智武,刘树根,罗玉宏,等,2006.南大巴山前陆冲断带构造样式及 变形机制分析[J].大地构造与成矿学,30(3):294-304.
- 刘田,冯明友,王兴志,等,2019. 渝东北巫溪地区晚奥陶世五峰期元 素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学, 30(5):740-750.
- 毛黎光,肖安成,魏国齐,等,2011.扬子地块北缘晚古生代-早中生 代裂谷系统的分布及成因分析[J].岩石学报,27(3):721 -731.
- 聂海宽,金之钧,马鑫,等,2017.四川盆地及邻区上奥陶统五峰组-下志留统龙马溪组底部笔石带及沉积特征[J].石油学报,38 (2):160-174.
- 邱振,江增光,董大忠,等,2017. 巫溪地区五峰组—龙马溪组页岩有 机质沉积模式[J].中国矿业大学学报,46(5):1134-1143.
- 戎嘉余和陈旭,1987.华南晚奥陶世的动物群分异及生物相、岩相分 布模式[J].古生物学报,26(3):507 - 535.
- 戎嘉余,樊隽轩,李国祥等,2006. 华南史前海洋生物多样性的演变型 式.见:戎嘉余,方宗杰,周忠和,等,主编. 生物的起源、辐射与 多样性演变──华夏化石记录的启示[M]. 北京:科学出版社, 785-816.
- 戎嘉余和詹仁斌,1999. 华南奧陶、志留纪腕足动物群的更替兼论奥 陶纪末冰川活动的影响[J]. 现代地质,13(4):390-394.
- 戎嘉余,1984. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响[J]. 地层学杂志,8(1):19-29.
- 苏文博,何龙清,王永标,等,2002. 华南奥陶 志留系五峰组及龙马 溪组底部斑脱岩与高分辨综合地层[J]. 中国科学(D 辑:地球 科学),32(3):207-219.
- 汪啸风,曾庆銮,周天梅,等,1983.中国三峡东部地区奥陶系与志留 系界线的生物地层[J].中国科学(B辑),12:1123-1132.
- 汪啸风和柴之芳,1989.奥陶系与志留系界线处生物绝灭事件及其与 铱和碳同位素异常的关系[J].地质学报,63(3):65-74.
- 王传尚,陈孝红,汪啸风,等,2002.峡区晚奥陶世地球化学异常与奥 陶系 - 志留系之交环境变迁[J].地层学杂志,26(4):272 -285.
- 王传尚,汪啸风,陈孝红,等,2001.奥陶系/志留系界线之交生物的绝 灭与复苏[J].华南地质与矿产,2:28-34.
- 王怿,樊隽轩,张元动,等,2011.湖北恩施太阳河奥陶纪-志留纪之

交沉积间断[J]. 地层学杂志,35(4):361-367.

- 王怿,戎嘉余,詹仁斌,等,2013. 鄂西南奧陶系 志留系交界地层研 究兼论宜昌上升[J]. 地层学杂志,37:264 - 274.
- 吴朝东,杨承运,陈其英,等,1999. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志,18(1):26-39.
- 肖安成,魏国齐,沈中延,等,2011.扬子地块与南秦岭造山带的盆山 系统与构造耦合[J].岩石学报,27(3):601-611.
- 熊国庆,王剑,胡仁发,等,2008.贵州梵净山地区震旦系微量元素特 征及沉积环境[J].地球学报,29(1):51-60.
- 熊国庆,王剑,李园园,等,2017a.大巴山地区早古生代黑色岩系岩相 古地理及页岩气地质意义[J].古地理学报,19(6):965-986.
- 熊国庆,王剑,李园园,等,2019a.大巴山地区晚奥陶世 早志留世" 宜昌上升"的沉积响应[J].地质论评,65(3):533 – 550.
- 熊国庆,王剑,李园园,等,2017b.大巴山西段上奥陶统-下志留统五 峰组一龙马溪组斑脱岩锆石 U-Pb 年龄及其地质意义[J]. 沉积 与特提斯地质,37(2):46-58.
- 熊国庆,王剑,李园园,等,2019b.南大巴山东段上奥陶统五峰组-下 志留统龙马溪组钾质斑脱岩锆石 U-Pb 年龄及其构造意义[J]. 地质学报,93(4):843-864.
- 熊国庆,2020.大巴山地区奧陶-志留纪之交构造转换过程的沉积响 应研究[D].成都:成都理工大学:148-183.
- 熊小辉,王剑,余谦,等,2015. 富有机质黑色页岩形成环境及背景的 元素地球化学反演 – 以渝东北地区田坝剖面五峰组—龙马溪 组页岩为例[J].天然气工业,35(4):25-32.
- 严德天,陈代钊,王清晨,等,2009.扬子地区奥陶系 志留系界线附近地球化学研究[J].中国科学(D辑:地球科学),39(3):285-299.
- 尹伯传,1988.扬子区晚奥陶世到早志留世海洋生物群的阶段性更替 及观音桥组的时代[J]. 江汉石油学院学报,10(1):32-37.
- 昝博文,刘树根,冉波,等,2017.扬子板块北缘下志留统龙马溪组重 晶石结核特征及其成因机制分析[J].岩石矿物学杂志,36(2): 213-226.
- 张国伟,张本仁,袁学诚,等,2001.秦岭造山带与大陆动力学[M].北 京:科学出版社,1-855.
- 张国伟,张宗清,董云鹏,等,1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报,11(2):101-114.
- 张琳娜,樊隽轩,陈清,等,2016.华南上奥陶统观音桥层的空间分布 和古地理重建[J].科学通报,61(18):2053-2063.
- 张琴,梁峰,王红岩,等,2018.页岩元素地球化学特征及古环境意义: 以渝东南地区五峰组一龙马溪组为例[J].中国矿业大学学报, 47(2):380-390.
- 周业鑫,丁俊,余谦,等,2017. 渝东北地区观音桥段沉积与有机碳同 位素特征及其区域对比[J]. 地质学报,91(5):1097-1107.

XIONG Guoqing^{1,2}, LIU Chunlai³, DONG Guoming³, CUI Wei³

(1. Chengdu Center, China Geological Survey, Chengdu 610081, China; 2. Key Laboratory of Sedimentary Basin & Oil and Gas Resources of MNR, Chengdu 610081, China; 3. The 2nd Geological Brigade of Hebei Bureau of Geology and Mineral Resource Exploration, Tangshan 063004, China)

Abstract: Element geochemistry plays an important role in judging sedimentary environments such as redox environment and bottom water condition during deposition process of sediments. A detailed element geochemistry study of mudstones from the upper Ordovician Wufeng Formation to lower Silurian Longmaxi Formation in southern Dabashan mountain is carried out in this paper. The results show that Linxiang Formation has a higher Al₂O₃ content than Wufeng Formation, and from bottom Wufeng Formation to upper Longmaxi Formation, the contents of Al₂O₃ increase gradually. Both contents of Al₂O₃ and TiO₂ have a negative correlation with TOC. Redox-sensitive elements such as U, V and Mo are enriched, indicating an anoxic environment during the deposition of the sediments. Two dramatically enriched anomalies of U, V and Mo in different strata from different profiles show a sulfidic condition. The distributions of NASC-normalized REEs display slightly right-tilted patterns, which are enriched in LREEs and depleted in HREE sand have an obvious Eu negative anomaly. The Ce negative abnormalies of Wufeng Formation and Longmaxi Formation signify an anoxic environment in bottom water and the minor Eu positive abnormalies from Liziping profile probably imply hydrothermal activities during precipitating. Covariation of ratios of redox-sensitive elements such as Mo/TOC and Mo_{EF}-U_{EF} reveal that southern Daba Mountain during Ordovician-Silurian transition is generally in an open oceanic environment with weak stagnant oxygen depletion or medium stagnant anoxia. The sedimentary environment of study area at that time is mainly controlled by fluctuations of sea level and paleoseafloor topography, locally influenced by oceanic hydrothermal currents from Qinling Ocean in the north.

Key words: Southern Daba Mountain; element geochemistry; redox environment; bottom water condition; Ordovician-Silurian transition