DOI:10.19826/j. cnki. 1009-3850. 2020. 10004

江西大游山地区水系沉积物地球化学特征及找矿方向

蒋起保1、魏 锦1、欧阳永棚1、饶建锋1、李艳萍1、张雪辉2

(1. 江西省地质矿产勘查开发局九一二大队,江西 鹰潭 335001;2. 中国地质调查局南京地质调查中心,江苏 南京 210016)

摘要:朱溪特大型钨铜矿床的发现,使大游山地区 W-Cu 多金属的成矿潜力受到广泛的关注。本文依据1:5万水系 沉积物测量成果,探讨大游山地区成矿元素含量、分布、组合以及综合异常等特征。结果显示,朱溪地区与长源坞地 区异常强度高,规模大,元素套合好,朱溪地区为 W-Cu 多金属找矿远景区,长源坞地区为 W-Bi 多金属找矿远景区。

关键 词:水系沉积物;地球化学特征;找矿远景区;大游山地区

中图分类号:P595 文献标识码:A

随着勘查程度越来越高,发现的地表矿可能性 减小,找矿难度越来越大,必须寻找隐伏及埋深较 大的矿床。水系沉积物地球化学测量可在山地、丘 陵地区寻找金属矿产发挥重要的作用^[1-9]。

近几年来在大游山地区发现了朱溪特大型钨 铜矿床,目前对朱溪地区的成矿条件^[10-11]、找矿进 展与找矿方向^[12-15]、岩石地球化学特征^[16-18]及控岩 - 控矿特征^[19]等方面做了较多的研究,但对区域地 球化学特征研究稍显薄弱。1976—1986年,研究区 开展过1:20万土壤测量和1:10万水系沉积物测量 工作,在朱溪、沿沟等地圈定了异常:近年,李艳萍 等^[20]对大游山地区地球化学特征与构造 - 成矿的 联系进行了讨论,但未对元素组合特征进行深入分 析,也未圈出找矿远景区;蒋起保等[21] 对双尖山地 区地球化学特征及其对找矿的指示作用进行了研 究,但未对区域地球化学特征进行分析。本文采用 最新获取的1:5万水系沉积物地球化学测量数据, 分析各元素地球化学参数特征和元素组合特征,结 合地质背景及成矿规律,圈定地球化学异常和找矿 远景区,为研究区下一步找矿提供地球化学信息。

1 区域地质概况

研究区大地构造位置位于下扬子陆块江南古

岛弧带东南部,钦杭结合带萍乐坳陷带之东端(图 la),赣东北深大断裂北西侧。其成矿区带隶属于 钦杭结合带东段北部 Cu-Pb-Zn-Ag-Au-W-Sn-Nb-Ta-Mn-海泡石-萤石-硅灰石成矿带之萍乡-乐平燕山期 Cu-Pb-Zn-Au-Ag-Co成矿亚带东段大游山-清华 Cu-Au 多金属成矿远景区^[22-23]。

研究区基底地层为新元古界万年群,盖层由石炭系—第四系组成。万年群可细分为程源组、牛头岭组,主要为一套深海盆地相夹浊流沉积相泥砂质建造,间伴有海相火山岩;石炭系—二叠系主要为碳酸盐岩及泥砂质碎屑岩,为区内最主要的 W-Cu多金属矿床赋矿层位;三叠系主要为含煤碎屑岩夹少量碳酸盐岩;侏罗系—白垩系主要为砂岩、砾岩等陆相碎屑岩;第四系主要为砂、砾、黏土等松散沉积物^[19](图 1b)。

区域岩浆活动较为强烈,地表岩性以花岗闪长 (斑)岩、花岗斑岩、二云母花岗岩等中酸性岩为主, 受控于北东向构造,主要呈小岩株、岩脉、岩墙等产 出,规模较小;在朱溪、月形矿区等深部揭露到以黑 云母花岗岩、二云母花岗岩、云英岩化花岗岩为主 的隐伏花岗岩体^[19](图1b)。

受九岭南缘多层逆冲推覆构造作用影响,本区

收稿日期:2020-04-23;改回日期:2020-10-23

作者简介:蒋起保(1990—),男,本科,化探工程师,主要从事化探及地质矿产勘查工作。E-mail:jqbcug@163.com

通讯作者:饶建锋(1972—),男,本科,正高级工程师,主要从事矿产勘查和综合研究工作。E-mail:948272989@qq.com

资助项目:中国地质调查局《江西塔前·大游山地区矿产地质调查》(12120113065300)、《钦杭成矿带武宁 – 平江地区钨铜多金属矿地质调查》(DD20190153)、江西省地质矿产勘查开发局《江西朱溪矿区深部及外围控矿构造研究》(赣地矿字[2017]78号)、国土资源部公益性科研《江西朱溪铜钨矿成矿规律与预测研究》(201411035)

图 1 大游山地区构造位置图(a)及地质简图(b)(据文献[24]修改)

 第四系/白垩系;2. 侏罗系/三叠系;3. 二叠系/石炭系;4. 新元古界;5. 燕山晚期钠长花岗岩;6. 燕山早期花岗闪长斑岩;7. 燕山早期花岗 斑岩;8. 华力西晚期辉绿岩;9. 华力西晚期辉长岩;10. 晋宁晚期花岗闪长斑岩;11. 基性岩脉:βμ 辉绿岩、辉绿玢岩、辉长辉绿岩,υ辉长岩;
 12. 中性岩脉:δ闪长岩;13. 酸性岩脉:γδπ花岗闪长斑岩,γπ花岗斑岩,q石英脉,14. 平行不整合界线/地质界线;15. 实测性质不明断层/推测性质不明断层;16. 逆掩推覆断层;17. 实测(推测)构造窗;18. 正常岩层产状;19. 倒转岩层产状;20. 研究区

Fig. 1 Simplified geological map of Dayoushan area (a) and location of the study area (b) (modified after ref. [24])

新元古界万年群由北西向南东逆冲于石炭系—三 叠系之上,基底构造以褶皱、韧性剪切和片理化为 主,而石炭系—三叠系则呈走向北东 50°~55°、倾 向北西的单斜构造^[19]。区内断裂构造以北东向为 主,其次为北北东、北西和近东西向(图 1b)。

2 样品采集与加工分析

1:5 万水系沉积物测量在一级水系末端缓流处 采集样品 2175 件。采集物质为冲积物中粒级为 40 目的中细粒砂、岩屑等物质。

样品加工分析由江西省地质矿产勘查开发局 九一二实验室完成,采用等离子体质谱(ICP-MS)、 原子荧光(AFS)、发射光谱(AES)等方法,分析了 Au、Ag、Cu、Pb、Zn、W、Sn、Mo、Bi、As、Sb、Ba、Cr、Co、Cd、Hg、Ni、F等18种元素。按照普查规范要求共插入100件外部监控样及100件国家一级标样与样品同步分析,报出率均为100%,合格率均大于96%^①。

3 地球化学特征

3.1 元素含量特征

选用最大值(Max)、均值(X)、标准离差(S)、中 位数(Me)、背景值(C_0)、变异系数(Cv)、富集系数 (K)等地球化学参数来讨论水系沉积物中元素含量 特征(表1)。K 为均值与中国水系沉积物元素丰度 之比^[25]。

表1	大游山地区水系沉积物地球化学特征参数							
Table 1	Geochemical	parameters	based	on	stream			
sediment survey in Dayoushan area								

元素	Max	Х	S	Me	C ₀	Cv	K
Au	100	3	8.9	2	1.822	2.97	1.478
Ag	9.057	0.085	0.274	0.06	0.064	3.23	0.904
Cu	1975	35.2	51.3	30	32.13	1.46	1.377
Pb	1279	40.4	53.5	33	35.01	1.33	1.384
Zn	2300	126.7	76.5	115	120. 2	0.6	1.642
W	231	3.09	6.78	2.14	2.460	2.19	1.132
Sn	462	5.1	11.1	4.16	4.410	2.17	1.235
Mo	13.3	0.96	0.83	0.82	0. 859	0.87	0.850
Bi	41.1	0.78	1.44	0.63	0. 671	1.86	1.560
As	390	21.1	24. 2	15.1	18.54	1.15	1.588
\mathbf{Sb}	134	3.3	5.2	2.12	2.589	1.57	2.324
Ba	1997	360	115	347	358.9	0.32	0.690
\mathbf{Cr}	5668	132.2	249.6	100	106.9	1.89	1.948
Co	175.8	17.9	9.1	16.6	17.73	0.51	1.366
Cd	12.6	0.43	0.711	0.27	0.306	1.65	1.667
Hg	5555	114	185	89	97.97	1.62	1.652
Ni	2491	56.5	112.5	42.87	45.06	1.99	1.971
F	19477	639	827	557	572.6	1.29	1.209

注:Au、Hg含量单位为×10⁻⁹,其它元素含量均为×10⁻⁶。

大游山地区 Sb、Ni、Cr、Cd、Hg、Zn、As、Bi 富集 程度高,富集系数均大于 1.5;Au、Pb、Cu、Co、Sn、F、 W 富集程度相对较高,富集系数介于 1~1.5;而 Ba、Mo、Ag 相对贫化,富集系数均小于 1。富集系数 仅反映研究区与中国水系沉积物丰度的相对比值, 并非代表各元素在研究区的总体分布态势,平均值 较低的元素在局部地区仍有相对富集的可能^[6]。

为研究各元素含量变异程度、高强数据的多 少,进而探讨富集成矿的可能性,利用原始数据集 的变异系数(CV1)及CV1与背景数据集变异系数 (CV2)的比值绘制元素变异系数解析图(图2)。 Ba、Co、Zn、Mo、As、Sb、F、Cd、Hg等元素变异系数较 小,说明这些元素含量在区内分布较为均匀;而Ag、 Au、Ni、Cr、Sn、W、Bi、Cu、Pb等元素变异系数较大, 说明其含量变化幅度较大,富集成矿的可能性较 大,可作为区域找矿的指示元素。

3.2 元素分布特征

为探索元素富集贫化与地层、岩性的关系及不同地质单元中元素的离散程度,制作相对丰度曲线(各地质单元中元素均值相对于全区均值比值)及变异系数曲线图(图3、图4)。

石炭系—二叠系中 Au、Ag、Cu、Pb、W、Mo、Bi、As、Sb、Cd、Hg等元素丰度较高,具有富集成矿的物质条件。其它地层中各元素相对丰度集中在"1"上下,且波动幅度小。

石炭系、二叠系中的 Au、Ag、Cu、Pb、W、Bi、Sb, 牛头岭组上段中的 W、Sn,三叠系、二叠系程源组上 段、牛头岭组上段的 Cr、Ni,程源组、牛头岭组上段 的 Au 表现为较高变异,说明元素分布不均匀,对应 地层为成矿有力地段。

结合相对丰度曲线与变异系数曲线,石炭系、 二叠系中 Au、Ag、Cu、Pb、W、Bi、Sb 不仅拥有较高的 丰度、还具有较高的变异系数,成矿可能性最大。

图 2 大游山地区各元素变异系数解析图

Fig. 2 Variation coefficients of various elements in Dayoushan area

图3 大游山地区各地质单元水系沉积物中各元素相对 丰度

Fig. 3 Relative abundances of elements in stream sediments from various geological units in Dayoushan area

图 4 大游山地区各地质单元水系沉积物中各元素变异系数 Fig. 4 Variation coefficients of elements in stream sediments from various geological units in Dayoushan area

Table 2

3.3 元素组合特征

对研究区 2125 个水系沉积物数据按相关系数 进行了 R 型聚类分析(图 5),截取距离系数(相关 系数)0.35 为指标,得到相关性较强的 2 个簇群。I 簇 Cr、Ni、Co 等亲铁元素,可反映超基性岩、基性岩 的元素分布及相关成矿信息。II 簇 Cu、Sn、Zn、Ag、 Bi、Sb、Pb、As、Mo、Cd 等亲铜元素,可反映中酸性侵 入岩的元素分布与金属矿化信息。

sediments in Dayoushan area

3.4 单元素异常特征

将分析数据取对数后,统计其均值 X 与离差 S, 用逐步剔除法检验,对大于 X + 3S 与小于 X – 3S 的 数据进行剔除,直至获得服从正态分布的母体,剩 下的数据(正态分布的母体)统计其均值作为研究 区的背景值 C_0 ,再按 T = C_0 + 2S 求得异常下限^[26]。

本次共圈定 18 种元素 252 处单元素地球化学 异常(表 2),其中,W 异常7个,异常面积 72.14km²,单个异常多表现为规模大,强度高;Au异 常25个,异常面积78.45km²,分布较零星,多具三 级分带;Cu异常12个,异常面积15.19km²,主要分 在朱溪、长源坞地区,其余地区强度弱;Pb 异常20 个,异常面积43.95km²,沿中生代与新元古代的不 整合接触界线分布;Zn异常15个,异常面积 53.99km²,以外带为主,强度不高,但面积较大;Ag 异常13个,异常面积36.73km²,多分布在研究区西 侧。各元素异常多呈北东向展布,与研究区构造方 向一致,构造地球化学特征明显。

youshan area							
元素	日本人来	异常面积	异常	最高浓度			
	开币门奴	/km ²	百分比/%	分带			
W	7	72.14	16.30%	3			
Cu	12	15.19	3.43%	3			
Bi	17	60.35	13.64%	3			
Au	25	78.45	17.72%	3			
Ag	13	36.73	8.30%	3			
Pb	20	43.95	9.93%	3			
Zn	15	53.99	12.20%	3			
Sn	16	37.71	8.52%	3			
Mo	13	45.85	10.36%	3			
As	14	67.44	15.24%	3			
\mathbf{Sb}	12	107.23	24. 23%	3			
Ba	6	3.11	0.70%	2			
Cr	16	53.89	12.18%	3			
Co	14	9.17	2.07%	2			
Cd	5	95.13	21.49%	3			
Hg	15	45.85	10.36%	3			
Ni	19	51.05	11.53%	3			
F	13	43.45	9.82%	3			

表 2 大游山地区单元素地球化学特征

Geochemical anomalies of single element in

3.5 综合异常特征

将空间上密切相伴、同种成因的所有单元素异 常归并为一个综合异常,共圈出12处综合异常。异 常分布总体与构造格局一致,由北西向至南东向可 分为长源坞—谢家坞、朱溪—立新、珍珠山三个呈 北东向展布的异常带,分别与凰岗—景德镇推覆构 造带、塔前—赋春推覆构造带、临港—乐河推覆构 造带相对应,可见构造是影响研究区地球化学异常 的主要因素之一。

长源坞—谢家坞异常带位于研究区北西部,分 布2个综合异常。异常以W、Bi、Au等元素为主,异 常以强度较高、规模较大,组合元素较少为特征,寻 找钨、金矿的前景较好。

朱溪—立新异常带位于研究区中部,分布有7 个综合异常。异常以W、Cu、Pb、Mo、Ag、Zn等元素 为主,异常强度、规模较大,找矿前景好,为研究区 主要异常带。异常与构造、地层、岩体均呈显著相 关:异常带沿构造带方向分布,单元素异常的展布 方向也多与断裂方向一致;异常区出露地层为二叠 系、石炭系及其与新元古界浅变质岩系不整合带附 近,晚古生代地层在横路—外横塘一带形成南北两 套地层,异常也顺地层形成透镜状;异常带中较好的异常通常分布在花岗斑岩、花岗闪长岩、花岗闪 长斑岩、闪长岩、闪长玢岩等小岩体或脉岩出露 地区。 珍珠山异常带位于研究区南东部,异常以W、 As等元素为主,该异常的形成与珍珠山岩体密切相 关,异常强度、规模较高,地表见有白钨矿化,有一 定的找矿前景。(图6)

图 6 大游山地区综合地球化学异常及找矿远景区

1. 第四系/白垩系;2. 三叠系/二叠系;3. 石炭系;4. 程源组;5. 牛角岭组;6. 花岗斑岩;7. 钠长花岗岩;8. 花岗细晶岩;9. 断层/平行不整合界 线;10. 推覆断层;11. 综合异常;12. 找矿远景区

Fig. 6 Comprehensive geochemical anomalies and promising ore-forming areas in Dayoushan area

4 找矿远景区圈定

根据地球化学特征、结合地质、物探工作成果 及区域成矿类型、控矿因素,圈定出朱溪 W-Cu 多金 属找矿远景区及长源坞 W-Bi 多金属找矿远景区。

4.1 朱溪 W-Cu 多金属找矿远景区

远景区位于研究区南西部朱溪地区,出露新元 古代浅变质岩基底和石炭系—白垩系沉积盖层;位 于塔前-赋春推覆构造带中段,构造断裂发育,以北 东向为主,破碎带内岩石强烈揉皱、破碎、蚀变、糜 棱岩化发育,显示压扭性结构面特征^[27];岩浆岩主 要有、(蚀变)花岗岩、花岗斑岩、花岗闪长岩、煌斑 岩及二长岩脉^[27-28],其中细粒黑云母花岗岩为主要 成矿岩体^[29]。

远景区面积 12.2km²,组合异常为 W、Cu、Mo、

Pb、Zn、Au、Ag、Sn、Bi、As、Sb、Cd、Hg、F。异常形态 规整,异常强度高,规模大,各元素套合好,浓集中 心一致,多呈北东向板状或椭圆状,浓集中心明显, 多数元素发育有三级浓度分带。W 异常面积 8.25km²,平均强度为 8.05×10⁶,峰值为 33.9× 10⁶;Cu 异常面积 4.89km²,平均强度为 206.9× 10⁶,峰值为 801×10⁶;Mo 异常面积 5.38km²,平均 强度为 2.88×10⁶,峰值为 12×10⁶;Ag 异常面积 12.19km²,平均强度为 0.65×10⁶,峰值为 9.06× 10⁶;Au 异常面积 12.19km²,平均强度为 8.65× 10⁹,峰值为 100×10⁹(表 3、图 7)。

异常存在分带现象,内带为W、Cu、Pb、Zn、Mo、 Sn等中高温元素;外带为Au、Ag、Bi、As、Sb、Cd等, 多为中低温元素。通过朱溪矿区的普查工作可知, 成矿元素主要为内带元素。

	Table 3 Geochemical parameters of comprehensive geochemical anomalies in Zhuxi area							
元素	异常下限	单元素异常面积	平均强度	最高强度	异常衬度	异常规模/km ²	元素浓度分带	
W	3.4	8.25	8.05	33.9	2.25	18.54	内、中、外	
Cu	50	4.89	206. 9	801	4.14	20. 24	内、中、外	
Mo	1.4	5.38	2.88	12	2.06	11.06	内、中、外	
Ag	0.11	12.19	0.65	9.06	5.9	75.72	内、中、外	
Au	3	12.19	8.65	100	2.88	35.51	内、中、外	
Pb	50	5.07	154.7	1024	3.09	15.68	内、中、外	
Zn	150	4. 51	259.7	835	1.73	7.81	中、外	
Sn	7	6. 63	20.08	117	2.87	19.02	内、中、外	
Bi	0.9	12.25	3.49	41.1	3.88	47.54	内、中、外	
As	28	11.3	86.31	245	3.08	34.83	内、中、外	
\mathbf{Sb}	3.2	12.19	21.94	134	6.85	83.56	内、中、外	
Cd	0.44	10. 57	0.95	12.6	2.16	22.83	内、中、外	
Hg	150	5.5	290	682	1.93	10.63	中、外	
F	780	4.01	1212	2981	1.55	6. 23	中、外	

表3 朱溪地区综合异常基本地球化学参数统计

注:Au、Hg的单位为×109,其它元素均为×106。

图 7 朱溪远景区异常剖析图

1. 第四系;2. 三叠系;3. 二叠系;4. 石炭系;5. 新元古界万年群程源组;6. 新元古界万年群牛头岭组;7. 碱性岩脉;8. 中酸性岩脉;9. 远景区 范围;10.2015、2016 年提交资源储量范围

Fig. 7 Geochemical anomaly map of Zhuxi

取远景区内 60 件水系沉积物样品原始数据进 行 R 型聚类分析,当 R = 0.5 时,将研究区内 18 种 元素分为 4 簇(图 8)。I 簇 W、Cu、Bi、Pb、Sn、Zn、 Sb、Ag、Cd、Hg、As 亲硫元素组合,是与已发现的朱 溪钨铜矿床密切相关的元素组合,可作为区域寻找 砂卡岩型钨、铜矿的指示元素;II 簇(Mo、F、Cr、Ni、 Co),III 簇(Ba)及 IV 簇(Au)可能是与朱溪钨铜矿 不同成因的元素组合。

图 8 不俟地區小赤仍標彻 A 型乘矢刀仍盾杀图 Fig. 8 Cluster analysis diagram of elements from stream

sediments in Zhuxi area

该远景区内已发现朱溪超大型钨铜矿,水系沉 积物异常元素组合与已发现的钨矿及伴生的铜矿、 银矿对应良好。异常产出位置也与朱溪钨铜矿对 应,但异常规模远大于矿体规模。现资源储量估算 范围在异常区西侧,因此扩大找矿规模,可在异常 区东侧着手。同时,远景区的伴生元素 Au、Ag、Pb、 Zn、Bi、Sb等亦呈高异常,可寻找金、银、铅锌、铋、锑 等伴生或次生矿床。

4.2 长源坞 W-Bi 多金属找矿远景区

远景区在研究区北西部长源坞地区,出露万年 群程源组下段、牛头岭组上段浅变质岩;断裂构造 发育,以北东向断裂为主;岩浆岩主要为花岗斑岩脉、辉绿岩脉;地表见有大量石英细脉或网脉,脉内 见有黄铁矿化。

远景区面积 15.5km²,异常元素组合为 W、Bi、 Mo、Cu、Pb、Zn、Au、Ag、Sn、As。异常形态较不规整, W、Bi等部分元素异常强度高,规模大,浓集中心明 显,其中 W、Bi、Au、Cu等元素具有三级浓度分带。 W 异常面积 15.15km²,平均强度为 12.13×10⁶,峰 值为 231×10⁶;Bi 异常面积 4.72km²,平均强度为 1.79×10⁶,峰值为 7.15×10⁶;Mo 异常面积 1.35km²,平均强度为 2.8×10⁶,峰值为 11.3×10⁶; Au 异常面积 3.51km²,平均强度为 9.7×10⁹,峰值 为 100×10⁹;Cu异常面积 2.75km²,平均强度为 212×10⁶,峰值为 1975×10⁶(表4、图9)。

远景区可分为南、北两个异常中心,南异常中 心以W、Bi、Ag元素组合为主。通过异常查证,该异 常中心地表处见有白钨矿脉及金矿脉。在南异常 中心处施工了796m的钻孔,共圈出5条白钨矿体, 累计矿体视厚度7.70m,WO₃平均品位约0.180%。 北异常中心处未展开系统找矿工作,虽然北异常中 心面积较小、强度也稍弱于南异常区,但北异常区 元素组合较多,W、Mo、Au、Ag、Cu、Zn、Sn、Sb等元素 在该处均有一定规模的异常,且各元素异常套合良 好,地表石英细、微脉发育,是该远景区的一个找矿 方向。

Table 4 Geochemical parameters of comprehensive geochemical anomanes in Changyuanwu area							
元素	异常下限	单元素异常面积	平均强度	最高强度	异常衬度	异常规模/km ²	元素浓度分带
W	3.4	15. 15	12.13	231	3.57	54.04	内、中、外
Bi	0.9	4.72	1.79	7.15	1.99	9.41	内、中、外
Mo	1.4	1.35	2.8	11.3	2	2.7	中、外
Au	3	3.51	9.7	100	3.23	11.35	内、中、外
Cu	50	2.75	212	1975	4.24	11.66	内、中、外
Ag	0.11	6.63	0.18	1.02	1.67	11.07	中、外
Pb	50	0.24	79	132	1.58	0.38	外
Zn	150	2.42	314.5	2300	2.1	5.07	内、中、外
Sn	7	2.75	46.59	462	6.66	18.3	内、中、外
As	28	7.6	37.87	101	1.35	10. 28	中、外
\mathbf{Sb}	3.2	4. 52	5.64	29	1.76	7.97	中、外
Cr	150	2.05	194.4	894	1.3	2.66	中、外
Ni	64	1.99	86.15	398	1.35	2.68	中、外

注:Au、Hg的单位为×10⁻⁹,其它元素均为×10⁻⁶。

表4 长源坞远景区基本地球化学参数统计

图 9 长源坞远景区异常剖析图 1. 第四系;2. 新元古界万年群程源组;3. 新元古界万年群牛头岭组;4. 远景区范围 Fig. 9 Geochemical anomaly map of Changyuanwu area

5 结论

(1)与中国水系沉积物丰度相比较,大游山地 区水系沉积物中 Sb、Ni、Cr、Cd、Hg、Zn、As、Bi 较明 显富集;W、Cu、Bi、Sn、Pb、Ag、Au、Ni、Cr 变异系数较 大,富集成矿可能性较大,可作为区域找矿的指示 元素。

(2)Au、Ag、Cu、Pb、W、Bi、Sb 在石炭系、二叠系 等赋矿层位中丰度值和变异系数均较高,是研究区 最有利的成矿元素。

(3)圈定出朱溪 W-Cu 多金属找矿远景区和长 源坞 W-Bi 多金属找矿远景区,通过地球化学分析 认为前者可在东部扩大找矿规模,或寻找金、银、铅 锌、铋、锑等伴生或次生矿床;后者可在北异常中心 处寻找钨、铜、金等金属矿床。

注释:

①江西省地质矿产勘查开发局912 大队.2016. 江西塔前-大游山地 区矿产地质调查成果报告[R].

参考文献:

- [1] DZ/T 0011-2015. 地球化学普查规范(1:50000)[S].
- [2] 王磊,杨建国,王小红,等. 甘肃北山拾金坡-南金滩地区水系

沉积物地球化学特征及找矿远景[J]. 中国地质,2016,43 (2):585-593.

- [3] 赵武强,崔森,邹先武,等. 湖南禾库地区水系沉积物地球化学 特征及找矿预测[J]. 中国地质,2014,41(2):638-647.
- [4] 崔晓亮,刘婷婷,王文恒,等. 东昆仑布青山地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探,2011,35(5): 573-578.
- [5] 李玉芹,沈恒丽,王学贞,等.都兰地区水系沉积物测量地球化 学特征及找矿预测[J].矿物学报,2011,31(3):615-620.
- [6] 张运强,陈海燕,张立国,等. 冀北新杖子地区水系沉积物地球 化学特征及找矿预测[J]. 中国地质,2015,42(6):1980 - 1988.
- [7] 周晓中,范丽琨,申勇胜. 沟里地区地质地球化学特征及找矿 方向[J]. 黄金科学技术,2009,17(3):17-19.
- [8] 戴慧敏,代雅键,马振东,等.大兴安岭查巴奇地区水系沉积物
 地球化学特征及找矿方向[J],现代地质,2012,26(5):1043
 1050.
- [9] 刘书生,丁俊,张林奎,等.云南麻栗坡地区成矿元素的多重分形特征与成矿预测[J].沉积与特提斯地质,2009,29(03):71-78.
- [10] 陈国华,舒良树,舒立旻,等. 江南东段朱溪钨(铜)多金属矿
 床地质特征与成矿背景[J]. 中国科学:地球科学,2015,45
 (12):1799-1818+1-6.
- [11] 陈国华,万浩章,舒良树,等. 江西景德镇朱溪铜钨多金属矿 床地质特征与控矿条件分析[J]. 岩石学报,2012,28(12): 3901-3914.
- [12] 欧阳永棚,饶建锋,尧在雨,等.朱溪式砂卡岩型矿床成矿作 用及找矿方向[J].地质科技情报,2018,37(3):148-158.

2021年(1)

- [13] 尧在雨,饶建锋,何细荣,等. 赣东北朱溪钨铜矿床新认识及 找矿方向分析[J]. 矿物学报,2017,37(S1),54-55.
- [14] 王先广,刘建光,陈国华,等. 江西朱溪钨铜矿找矿进展及建议[J]. 地质学刊,2014,38(3);483-491.
- [15] 何细荣,陈国华,刘建光,等. 江西景德镇朱溪地区铜钨多金 属矿找矿方向[J]. 中国钨业,2011,26(1):9-14.
- [16] 欧阳辉. 江西景德镇朱溪地区隐伏矿地球化学勘查方法研究[D]. 北京:中国地质大学(北京),2015.
- [17] 苏晓云,刘善宝,高虎,等. 基于电感耦合等离子体质谱/光谱 技术研究朱溪钨铜矿床原生晕地球化学特征[J]. 岩矿测 试,2015,34(2):252-260.
- [18] 吴筱萍,欧阳永棚,周耀湘,等.景德镇朱溪钨铜多金属矿床 岩浆岩地球化学特征及其对成矿的约束[J].中国地质, 2015,42(6):1885-1896.
- [19] 欧阳永棚,饶建锋,廖绍平,等. 赣东北朱溪矿集区构造控岩 - 控矿特征[J]. 中国地质,2019,46(4):878-893.
- [20] 李艳萍,蒋起保.大游山地区水系沉积物地球化学特征研究 [J].大科技,2018(20):189-190.
- [21] 蒋起保,贺玲. 江西双尖山地区地球化学特征及其对找矿的 指示作用[J]. 世界有色金属,2018(16):86-87.

- [22] 刘一,骆学全,张雪辉,等. 钦杭 Cu-Au-Pb-Zn-W 成矿带(东段)主要地质成矿特征及潜力分析[J]. 地质学报,2016,90
 (7):1551-1572.
- [23] 骆学全,孙建东,班宜忠,等. 华东片区 IV级成矿单元划分及成矿地质特征 [J]. 资源调查与环境,2015,36(3):157-164.
- [24] 魏锦,许杰辉,王先广,等.朱溪矿集区横路矿区成矿条件与 找矿潜力分析[J].中国地质,2019,46(4):906-918.
- [25] 迟清华,鄢明才.应用地球化学元素丰度数据手册[M].北 京:地质出版社,2007
- [26] 蒋敬业,程建萍,祈士华,等. 应用地球化学[M]. 武汉:中国 地质大学出版社,2006,1-340.
- [27] 欧阳永棚,陈国华,饶建锋,等.景德镇朱溪铜钨多金属矿床 地质特征及成矿机制[J].地质学刊,2014,38(3):359 -364.
- [28] 付文树,欧阳永棚,饶建锋,等. 钦杭成矿带东段钨成矿规律
 [J]. 沉积与特提斯地质,2019,39(02):35-44.
- [29] 刘建光,杨小鹏,周耀湘,等. 江西省浮梁县朱溪钨铜矿床花 岗岩成因及其与成矿的关系[J]. 资源调查与环境,2015,36 (4):276-284.

Geochemistry of stream sediments and its implication for ore-finding, Dayoushan, Jiangxi Province

Jiang Qibao¹, Wei Jin¹, Ouyang Yongpeng¹, Rao Jianfeng¹, Li Yanping¹, Zhang Xuehui² (1. No. 912 Geological Surveying Team, Jiangxi Bureau of Geology and Mineral Exploration and Development, Yingtan 335001, Jiangxi, China; 2. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China)

Abstract: Dayoushan area has become a focus of potential ore-finding areas since the discovery of Zhuxi tungstencopper deposit, a super-large-scale tungsten-copper deposit in the region. Based on the geochemical survey data of stream sediments at the scale of 1: 50000, this paper discusses the content, distribution, assemblage, and comprehensive anomalies of ore-forming elements in the Dayushan area. The results show that the Zhuxi area and Changyuanwu area are potential for ore-finding of tungsten and copper, and both areas are with large scale intensive geochemical anomalies which are related to ore-forming of tungsten and copper. We believe that Zhuxi area is a prospective area for W and Cu and Changyuanwu area is a prospective area for W and Bi.

Key words: stream sediments; geochemical characteristics; potential ore-prospecting area; Dayoushan area