DOI:10.19826/j. cnki.1009-3850(2020)01-0068-08

老挝琅勃拉邦构造带石英闪长岩锆石 U-Pb 定年: 古特提斯洋东向俯冲启示

郭林楠,侯林,聂飞,刘书生,徐思维,张启明

(中国地质调查局成都地质调查中心,四川 成都 610081)

摘要:老挝琅勃拉邦构造带位于印支板块西部,是东南亚特提斯域内的重要构造带之一。该地区多期次的岩浆活动 记录了多阶段的构造岩浆演化,但与古特提斯洋闭合过程相关的岩浆活动报道相对较少,导致与该过程相关的构造 -岩浆-成矿作用关系理解不清。本文在野外地质观察和岩相学研究的基础上,对老挝琅勃拉邦地区石英闪长岩 开展了锆石 U-Pb LA-ICP-MS 定年,分析结果表明,石英闪长岩结晶年龄为 260.5±1.8 Ma,表明琅勃拉邦构造带存 在中晚二叠世岩浆活动。结合前人研究结果,本文认为该中酸性侵入体很可能是古特提斯洋板片东向俯冲,难河 – 沙缴弧后盆地关闭过程中岩浆活动的产物,且为琅勃拉邦构造带向南连接至难河 – 程逸结合带提供了新资料。

关键 词:锆石 U-Pb 定年;琅勃拉邦构造带;石英闪长岩;古特提斯洋

中图分类号: 文献标识码:A

东南亚地区地处欧亚板块、太平洋板块和印度 板块的交汇处,是我国西南三江特提斯构造域向南 的延伸,经历了晚古生代 - 中生代古特提斯构造演 化和新生代大陆碰撞造山的叠加作用,构造演化和 岩浆活动相对复杂^[1-5](图 1a)。老挝琅勃拉邦构 造带位于印支板块西部,为一个 NNE-NE 向构造带, 带内出露大量中基性火山岩、火山碎屑岩和少量中 酸性侵入岩。琅勃拉邦构造带两侧分别为思茅 -彭世洛地块和黎府弧盆系,共同组成了中南半岛重 要的铜金多金属成矿带——老挝琅勃拉邦—泰国 黎府成矿带(图1b),带内主要产出斑岩-矽卡岩型 铜金矿、浅成低温热液型金银矿和造山型金矿[6-9]。 由于基础地质研究薄弱,目前对于琅勃拉邦构造带 的演化及其向南北延伸问题还存在争议,制约了东 南亚特提斯构造演化与成矿研究。已有研究表明, 琅勃拉邦构造带西南的难河 - 程逸结合带内也发 育与之类似的基性--中性火山岩和火山碎屑 岩[10-12],但两者是否具有对比性仍缺乏成岩年代证 据。本研究工作首次发现了琅勃拉邦构造带内的 石英闪长岩,并用于锆石 U-Pb 定年,相对于锆石粒 度较小的火山岩和火山碎屑岩更具优势。因此,本 研究试图通过石英闪长岩的锆石 U-Pb 定年揭示老 挝琅勃拉邦构造带晚古生代—中生代大地构造演 化与古特提斯洋的俯冲、碰撞、增生及其成矿作用 的关系,并为琅勃拉邦构造带向南连接问题提供新 资料。

1 区域地质背景

老挝琅勃拉邦构造带地处中南半岛中部,大地 构造位置处于印支板块西部,呈 NE-NNE 向贯穿老 挝琅勃拉邦—泰国黎府成矿带(图 1b)。该成矿带 从老挝北部琅勃拉邦向南经巴莱延伸至泰国中北 部黎府和碧差 汶,南北长约 800km,东西宽近 200km,东、西分别以奠边府—黎府缝合带和难河— 程逸缝合带为界^[13-14](图 1a)。该成矿带自晚石炭 世至三叠纪经历了多期次构造 – 岩浆活动和相关 的铜 – 金 – 银多金属成矿事件^[4,6]。

琅勃拉邦构造带内发育有大量晚古生代 - 中 生代枕状玄武岩、安山岩、辉长辉绿岩、闪长岩、火 山碎屑岩等中基性岩浆岩^[10-11,15-16](图 1b),带内 发育有以含金方解石大脉为特征的帕奔造山型金 矿床^[17]。其西南部难河 - 程逸结合带则分布一套

收稿日期: 2019-10-21; 改回日期: 2020-01-02

作者简介:郭林楠(1989-),男,博士,工程师,从事地质矿产研究工作。E-mail:linnanguo@163.com

资助项目:本研究得到中国地质调查局地质调查项目"东南亚大型锡铜金矿资源基地评价"(DD2019444)、"老挝、柬埔 寨及邻区矿产资源潜力评价"(DD20160107)的资助。

图 1 a. 老挝及邻区大地构造单元划分图;b. 琅勃拉邦 – 黎府成矿带地质矿产简图(据文献[1,17]修编)

Fig. 1 (a) Tectonic units of Laos and neighboring areas, (b) simplified geological map of the Luang Prabang-Loei metallogenic belt

由洋岛玄武岩、弧后盆地玄武岩、岛弧玄武岩、安山 岩及蛇纹岩、橄榄岩等组成的二叠—三叠纪镁铁质 -超镁铁质岩^[15]。琅勃拉邦构造带西北侧属思茅 - 彭世洛地块,主要由弧后前陆盆地组成。该盆地 主要发育晚古生界砂岩、页岩、浅变质岩类,三叠系 碎屑岩和碳酸盐岩,和中侏罗世红色碎屑岩[18],该 盆地内仅分布少量铜金矿点。琅勃拉邦构造带南 侧为黎府弧盆系,并可由西向东分为黎府蛇绿混杂 岩带、黎府-沙拉武里火山弧带两个亚带:黎府蛇 绿混杂岩带发育一套由洋脊玄武岩、岛弧火山岩和 硅质岩组成的晚泥盆世--晚石炭世蛇绿混杂岩,以 及一套安山质-流纹质火山岩/火山碎屑岩[19-20]. 发育泰国切垂浅成低温热液型金银矿[21];黎府-沙 拉武里火山弧带则是难河一程逸洋盆二叠纪一中 三叠世俯冲在碧差汶和黎府一带形成的岛弧火山 岩带,发育中酸性侵入岩及相关斑岩-矽卡岩型铜 金矿床^[22-23]。

2 样品采集与分析方法

2.1 样品特征

本研究采集了琅勃拉邦构造带中部的石英闪 长岩样品(图2),采样点位于老挝琅勃拉邦市东北 部约30km处(图1b)。石英闪长岩呈灰白—灰绿 色,块状构造,半自形粒状结构,表面存在一定程度 的风化(图2a)。主要矿物组成包括斜长石 (50%)、钾长石(30%)、石英(15%)和角闪石 (5%)。斜长石呈自形 - 半自形短柱状,粒径多在 0.1~0.8 mm,可见明显的聚片双晶,部分蚀变为绢 云母(图2b,c);钾长石多为半自形 - 他形短柱状, 粒径约0.2~1.0 mm,绢云母化蚀变较明显(图 2c);石英为他形粒状,粒径多为0.1~0.5 mm,部分 可见波状消光(图2b);角闪石为长柱状或粒状,粒 径约0.1~0.3 mm,可见六边形截面和角闪石式解 理(图2d),多呈集合体状分布。

2.2 分析测试方法

锆石分选、制靶和阴极发光照相在广州市拓岩 检测技术有限公司完成。将石英闪长岩样品碎至 100 目,在双目镜下仔细挑选锆石单矿物约 1000 粒,并挑选晶形相对完整的锆石固定在样品靶上。 在偏光显微镜下对靶上的锆石进行透射光和反射 光照相,镀膜后进行阴极发光(CL)照相。

锆石 U-Pb 同位素分析在武汉上谱分析科技有限责任公司完成。激光剥蚀电感耦合等离子体质

谱仪(LA-ICP-MS)型号为 Agilent 7700e,由 COMPexPro 102 ArF 193 nm 准分子激光器和 Micro Las 光学系统组成。激光剥蚀过程中采用氦气作载 气、氩气为补偿气以调节灵敏度。该仪器的参数、 测试流程、测试精度和测试标准样品等参见文 献^[24]。对锆石 U-Pb 分析的同位素数据离线处理采 用软件 ICPMSDataCal^[25]完成。锆石样品的 U-Pb 同 位素测试结果通过 Isoplot 3.0 软件完成年龄谐和图 绘制和年龄加权平均计算。

3 分析结果

3.1 锆石阴极发光图像特征

锆石的阴极发光图像显示锆石内部组成较为 均匀,少见或未见继承锆石(图3),可见清晰的岩浆 生长环带,表明其为岩浆成因锆石。锆石发光强弱 不一,颜色从暗黑色到亮白色均有,这与其所含放 射性物质的含量有关。一般放射性元素含量越多, 颜色越暗^[26]。锆石以自形 – 半自形为主,长度多在 100~200μm,长宽比值在1:2~1:1之间(图3)。

3.2 锆石 LA-ICP-MS U-Pb 测试结果

本文选取了 25 颗不同的锆石进行 LA-ICP-MS U-Pb 测试分析工作,结合透反射照片,避开有裂隙 和包裹体的位置。测试分析结果显示数据谐和度 较高,说明不存在 Pb 丢失的情况。25 个测点的²⁰⁶ Pb/²³⁸U 年龄在 257 Ma~1962 Ma 之间(图 4a,b), Th 含量为 169.7~1486.0 ppm,U 含量为 430.7~ 6373.9 ppm,Th/U 比值为 0.11~1.5,符合岩浆锆 石的特征。其中 10 个最年轻的测点结果相对集中, 加权平均年龄为 260.5±1.8 Ma(MSWD = 1.3;图 4c,d),这代表石英闪长岩的结晶年龄。

4 讨论

成岩年代是研究岩浆事件和区域构造演化的 关键和突破口。老挝琅勃拉邦构造带内石英闪长 岩的锆石的年龄数据表明其内的锆石较为复杂,具 有至少四个阶段的年龄值,分别为~1860 Ma、~440 Ma、~330 Ma 和~260 Ma(图4b)。锆石阴极发光 图像显示其具有清晰的岩浆生长环带(图3),且 Th/U比值大于 0.1(表1),表明其具有典型的岩浆 锆石成因。另外,锆石样品未显示明显的核边结 构,说明年龄较老的锆石是岩浆上升过程中捕获的 锆石。经过综合分析,我们认为琅勃拉邦石英闪长 岩的形成时代为 260.5±1.8 Ma,而捕获的岩浆锆 石表明该地区经历过~1860 Ma、~440 Ma 和~330 Ma 的岩浆活动。

图 2 石英闪长岩手标本及镜下特征

a. 石英闪长岩手标本;b. 中细粒不等粒结构;c. 部分长石蚀变为绢云母;d. 半自形角闪石。Hbl-普通角闪石;Kfs-钾长石;Pl-斜长石;Q-石英; Ser-绢云母

Fig. 3 Cathodoluminescence (CL) images for typical zircons from the quartz-diorite

			Table 1	LA-ICP	-MS U-Pb iso	tope dating	results of zi	ircon of the	quartz diori	te from Luan	g Prabang, L	aos			
		$w_{\rm B}/10^{-6}$		117 111			同位素	比值				年費	谷		년 태
 ф п?	Pb	Th	n	n/ur.	$^{207}\rm{Pb}/^{206}\rm{Pb}$	lσ	$^{207}{\rm Pb}/^{235}{\rm U}$	lσ	$^{206}{\rm Pb}/^{238}{\rm U}$	lσ	$^{207}{\rm Pb}/^{235}{\rm U}$	lσ	$^{206}{ m Pb}/^{238}{ m U}$	1σ	谐和度
02-01	176.12	644. 55	1101.75	0.59	0. 057006	0.001617	0.567047	0.015929	0.071816	0.000708	456.1	10.3	447. 1	4.3	98%
02-02	155.85	907.35	1777.72	0.51	0.052626	0.002124	0.307621	0.013082	0.042042	0.000485	272. 3	10. 2	265.5	3.0	<i>%</i>
02-03	80.05	411.35	1246.34	0.33	0. 052059	0.001897	0. 292390	0.010195	0.040712	0.000395	260.4	8.0	257.2	2.4	98%
02-04	86. 79	549.15	841.20	0.65	0. 051039	0.001992	0. 289877	0.011058	0.041206	0.000503	258.5	8.7	260.3	3.1	%66
02-05	568.31	246.85	1379.83	0.18	0.114430	0.002013	5.146963	0.091798	0.324195	0.002446	1843.9	15.2	1810.2	11.9	98%
02-06	557.06	169.68	1509.40	0.11	0. 114921	0.002270	5.407307	0.108674	0. 339241	0.002864	1886.0	17.3	1883.0	13.8	%66
02-07	339.12	1485.98	6373.86	0. 23	0. 051932	0.001155	0. 294319	0.006839	0. 040892	0.000436	262.0	5.4	258.4	2.7	98%
02-08	171. 13	360.12	2249.84	0.16	0. 055505	0.001216	0. 533579	0.012032	0. 069423	0.000677	434. 2	8.0	432. 7	4.1	%66
02-09	75.53	474. 24	845.40	0.56	0. 052203	0.001953	0. 299522	0.011252	0.041466	0.000467	266.0	8.8	261.9	2.9	98%
)2-10	159.48	883.95	1084.51	0.82	0.054182	0.001553	0.384178	0.011124	0.051196	0.000444	330.1	8.2	321.9	2.7	<i>%</i>
)2-11	113.64	511.01	1852.56	0.28	0.054006	0.002156	0.320431	0.012290	0.042904	0.000488	282.2	9.5	270.8	3.0	95%
)2-12	237. 28	923.85	1342.86	0.69	0.056103	0.001432	0.554467	0.014362	0.071302	0.000674	447.9	9.4	444. 0	4.1	%66
12-13	260.86	1392.14	1274.09	1.09	0.052921	0.001590	0.421494	0.011865	0. 057763	0.000560	357.1	8.5	362. 0	3.4	98%
12-14	434.71	209.01	960. 29	0. 22	0. 110753	0.001905	5.176196	0.089804	0. 336957	0.002431	1848.7	14.8	1872.0	11.8	98%
12-15	1071.72	703.02	2127.62	0.33	0.106017	0.001638	4. 581723	0.071042	0.311717	0.002224	1745.9	13.0	1749. 1	11.0	%66
)2-16	38. 13	218.83	430.66	0.51	0.054583	0.004873	0.317928	0.028937	0.042351	0.000965	280.3	22. 3	267.4	6.0	95%
02-17	78.89	304.74	897.89	0.34	0. 053588	0.001561	0.422401	0.013173	0. 056722	0.000555	357.8	9.4	355.7	3.4	%66
)2-18	161.32	999.85	668.44	1.50	0. 056555	0.002411	0.415130	0.017738	0. 052970	0.000611	352.6	12.7	332. 7	3.7	94%
)2-19	213.91	1144.16	3248.28	0.35	0. 052583	0.001273	0. 296589	0.007075	0. 040734	0.000342	263.7	5.5	257.4	2.1	<i>%</i>
)2-20	79 46	476 54	860 90	0 55	0 053846	0 001971	0 307675	0 011181	0 041360	0 000408	272 4	8 7	261 3	25	95%

表1 老挝琅勃拉邦石英闪长岩体中锆石 LA-ICP-MS U-Pb 同位素定年结果

72

通讨统计琅勃拉邦-黎府成矿带岩浆岩锆石 U-Pb年龄,可将区域岩浆活动大体分为四期,石炭纪、 早二叠世、晚二叠世—早中三叠世和晚三叠世(图 1)。石炭纪火山岩广泛分布于老挝西北部,包括老 挝琅勃拉邦东北部的辉绿岩脉和粗粒玄武岩.年龄 分别为335.5±3.3 Ma 和304.9±3.9 Ma,指示了大 陆弧后盆地环境[10]:琅勃拉邦南部安山岩、流纹岩 和凝灰岩,年龄分别为 330.4 ± 2.2 Ma, 334.9 ± 1.7 Ma和349.6±1.7 Ma^[20]:巴莱南部则发育314.6± 2.7 Ma 和 315.4 ± 3.8 Ma 的玄武岩和玄武质安山 岩,这些火山岩指示了印支地块西缘在石炭纪为活 动陆缘^[20]。早二叠世火山岩则主要为俯冲洋壳熔 融来源的安山质含角砾凝灰岩,分布于琅勃拉邦南 部,年龄为278 ± 2.8 Ma^[5];晚二叠世—早中三叠世 岩浆岩包括老挝--泰国边境大量出露的中酸性侵 入岩和分布于整个成矿带内的凝灰岩和凝灰质碎 屑岩,其中泰国普龙铜矿闪长岩成岩成矿年代为 240.6±1.2 Ma^[23];老挝琅勃拉邦周边和泰国碧差 汶西部的凝灰岩、凝灰质碎屑岩年龄均在250 Ma 左 右^[16],这些侵入岩和火山岩指示了晚二叠世—早中 三叠世与洋壳俯冲相关的大规模岩浆活动。晚三 叠世火山岩则主要包括出露于老挝琅勃拉邦西南 237.7±1.7 Ma的玄武质安山岩^[11]和琅勃拉邦周 边约226~215 Ma的火山碎屑岩^[15],表明区域俯冲 碰撞后存在长期岩浆活动。

上述研究表明,琅勃拉邦—黎府成矿带在石炭 纪—三叠纪期间经历了多期次的构造-岩浆活动,并 引发了相关铜金多金属成矿作用。早石炭世—晚 石炭世,伴随古特提斯主洋盆北向俯冲至印支地块 之下,主洋盆东北侧形成了一系列弧后盆地^[10],琅 勃拉邦构造带西北侧的思茅-彭世洛盆地即为石炭 纪的残余弧后盆地。中晚二叠世—早三叠世,古特 提斯洋东向俯冲,难河-沙缴弧后盆地开始关闭,琅 勃拉邦—黎府成矿带内发生大规模岩浆活动^[7],并 形成了浅成低温热液型 Au-Ag 矿如泰国切垂 (Chatree)^[21]。早中三叠世,古特提斯洋持续俯冲 闭合,带内发育斑岩-砂卡岩型铜金矿,如泰国普龙 (Phu Lon)和普泰普发(Phu Thap Fah)^[22]。至中晚 三叠世,滇缅马苏地块与印支地块碰撞后持续发生 岩浆活动,区域发育造山型金矿^[27]。

前人研究表明,琅勃拉邦构造带内存在石炭 纪、晚二叠世—早三叠世和中晚三叠世等多期岩浆 活动(图1),与本文~330 Ma的捕获锆石年龄具有 可比性。老挝琅勃拉邦地区石英闪长岩形成于~ 260 Ma,属中晚二叠世,表明其可能是古特提斯洋板 片东向俯冲,难河-沙缴弧后盆地关闭过程中岩浆活 动的产物,为琅勃拉邦构造带向南连接至难河-程逸 结合带提供了佐证。

5 结论

老挝琅勃拉邦地区石英闪长岩的锆石 U-Pb LA-ICP-MS 定年显示其成岩年代为 260.5 ±1.8 Ma,表明琅勃拉邦地区存在中晚二叠世岩浆活动。 该中酸性侵入体很可能是古特提斯洋板片东向俯 冲,难河 – 沙缴弧后盆地关闭过程中岩浆活动的产 物,为琅勃拉邦构造带向南连接至难河 – 程逸结合 带提供了佐证。

致谢 老挝琅勃拉邦地区野外研究工作得到 了天津华勘矿业投资有限公司相关工作人员的帮助与支持;锆石 U-Pb 同位素分析实验工作得到了 武汉上谱分析科技有限责任公司和广州市拓岩检 测技术有限公司相关工作人员的协助,在此一并致 以诚挚的感谢!

参考文献:

- Shi M F, Lin F C, Fan W Y, et al. Zircon U Pb ages and geochemistry of granitoids in the Truong Son terrane, Vietnam: Tectonic and metallogenic implications [J]. Journal of Asian Earth Sciences, 2015, 101: 101 – 120.
- [2] 高建华,范文玉,吴振波,等.老挝爬立山铁矿二长花岗斑岩 地球化学特征及其成矿意义[J].沉积与特提斯地质,2015, 35(3):102-108.
- [3] 王冬兵,罗亮,唐渊,等.昌宁-孟连结合带斜长角闪岩锆石 U-Pb年龄、地球化学特征及其地质意义[J].沉积与特提斯 地质,2017,37(4):17-28.
- [4] 刘书生,杨永飞,郭林楠,等.东南亚大地构造特征与成矿作用[J].中国地质,2018,45(05):7-33.
- [5] Shi M F, Wu Z B, Liu S S, et al. Geochronology and petrochemistry of volcanic rocks in the Xaignabouli Area, NW Laos [J]. Journal of Earth Science, 2019, 30(1): 37-51.
- [6] Goldfarb R J, Taylor R D, Collins G S, et al. Phanerozoic continental growth and gold metallogeny of Asia [J]. Gondwana Research, 2014, 25: 48 – 102.

- Zaw K, Meffre S, Lai C K, et al. Tectonics and metallogeny of mainland Southeast Asia – A review and contribution [J]. Gondwana Research, 2014, 26, 5–30.
- [8] Guo L N, Hou L, Liu S S, et al. REE geochemistry and C-O isotope characteristics of hydrothermal calcites: Implications for fluid-rock reaction and ore-forming processes in the Phapon gold deposit, NW Laos [J]. Minerals, 2018, 8(10): 438-459.
- [9] 施美凤,范文玉,林方成,等.泰国西部比洛克(Pilok)锡钨矿 流体包裹体研究及矿床成因[J].沉积与特提斯地质,2016, 36(2):97-104.
- [10] Qian X, Feng Q L, Wang Y J, et al. Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: carboniferous back-arc setting in northwest Laos [J]. Lithos, 2016, 245, 60 - 75.
- [11] Qian X, Feng Q L, Wang Y J, et al. Petrochemistry and tectonic setting of the Middle Triassic arc-like volcanic rocks in the Sayabouli area, NW Laos [J]. J. Earth Sci., 2016, 27, 365 – 377.
- [12] Bercovici A, Bourquin S, Broutin J, et al. Permian continental paleoenvironments in Southeastern Asia: new insights from the Luang Prabang Basin (Laos) [J]. J. Asian Earth Sci., 2012, 60, 197 – 211.
- [13] 赵延朋,康铁锁,宁庚陈,等.老挝班康姆铜金矿床火山 侵入杂岩地球化学特征及地质意义[J].岩石矿物学杂志,
 2017,36(3):281-294.
- [14] 王宏,林方成,李兴振,等.老挝及邻区构造单元划分与构 造演化[J].中国地质,2015,42(1):71-84.
- [15] 李兴振,刘朝基,丁俊.大湄公河次地区主要结合带的对比 与连接[J]. 沉积与特提斯地质,2004,24(4):1-12.
- [16] Blanchard S, Rossignol C, Bourquin S, et al. Late Triassic volcanic activity in South-East Asia: New stratigraphical, geochronological and paleontological evidence from the Luang Prabang Basin (Laos) [J]. Journal of Asian Earth Sciences, 2013, 70-71: 8-26.
- [17] Rossignol C, Bourquin S, Poujol M, et al. The volcaniclastic series from the Luang Prabang Basin, Laos: A witness of a Triassic magmatic arc? [J]. Journal of Asian Earth Sciences, 2016, 120: 159 - 183.
- [18] 郭林楠, 侯林, 刘书生, 等.老挝帕奔金矿床成矿流体来源 与矿床成因:稀土元素和C、O、S同位素证据[J].矿床地质, 2019, 38(2):233-250.
- [19] Tangwattananukul L, Ishiyama D, Matsubaya O, et al. Gold mineralization of Q prospect at Chatree deposit, central Thailand
 [R]. NMCC Annual Report, 2009, 16: 70 – 75.
- [20] Qian X, Feng Q L, Yang, W Q, et al. Arclike volcanic rocks in NW Laos: geochronological and geochemical constraints and their tectonic implications [J]. J. Asian Earth Sci., 2015, 98, 342 -357.
- [21] Salam A, Zaw K, Meffre S, et al. Geochemistry and geochronology of epithermal Au-hosted Chatree volcanic sequence: implication for tectonic setting of the Loei Fold Belt in central Thailand [J].

Gondwana Research, 2014, 26, 198 – 217.

- [22] Kamvong T, Zaw K. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand. Evidence from fluid inclusion and sulfur isotope studies [J]. Journal of Asian Earth Sciences, 2009, 34: 624 – 633.
- [23] 聂飞,刘书生,杨永飞,等.泰国普龙砂卡岩型铜矿床闪长岩
 锆石 U-Pb 定年及意义[J]. 沉积与特提斯地质, 2019, 39
 (4):71-78.
- [24] Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)

[J]. Precambrian Research, 2017, 290, 32-48.

- [25] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths [J]. Journal of Petrology, 2010, 51, 537 – 571.
- [26] 吴元保,郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
- [27] Guo L N, Liu S S, Hou L, et al. Fluid inclusion and C-H-O isotopes geochemistry of the Phapon gold deposit, NW Laos: Implications for fluid source and ore genesis [J]. Journal of Earth Science, 2019, 30(1): 80 - 94.

Zircon U-Pb dating of quartz-diorite from Luang Prabang tectonic belt in Laos: Implication for eastward subduction of the Paleo-Tethys Ocean

GUO Linnan, HOU Lin, NIE Fei, LIU Shusheng, Xu Siwei, ZHANG Qiming

(Chengdu Center, China Geological Survey, Chengdu 610081, China)

Abstract: The Luang Prabang tectonic belt in Laos is located in the western of Indo-China Plate, and it is one of the important tectonic belts in Southeast Asia- Tethys domain. Multi-stage magmatic activities in this area recorded multi-stage tectonic-magmatic evolutions. However, there are few reports on magmatic activity related to the closure process of Paleo-Tethys Ocean, thus the relationship of tectonic evolution-magmatism- metallogenesis in the process remain controversial. Based on field geological observations and petrographic studies, this article carried out zircon U-Pb LA-ICP-MS dating of quartz diorite in Luang Prabang, Laos. The results show that the crystalline age of the quartz diorite is 260.5 ± 1.8 Ma, indicating a Middle-Late Permian magmatic activity in the Luang Prabang tectonic belt. Combine with previous studies, we believe the medium-acid intrusive rock is likely to be the product of magmatic activity during the eastward subduction of the Paleo-Tethys Ocean-plate and closure of the Nan-Sra Kaeo backarc basin. It also provides new data indicating that the Luang Prabang tectonic zone may link to the Nan-Uttaradit to the south.

Key words: Zircon U-Pb dating; Luang Prabang tectonic zone; Quartz diorite; Paleo-Tethys Ocean