文章编号:1009-3850(2016)01-0030-08

川西江浪穹窿二叠系变玄武岩的地球化学特征 与岩石成因

陈道前¹,张惠华²,冯孝良²,唐高林³,代堰锫²,李同柱² (1. 成都理工大学地球科学学院,四川 成都 610059; 2. 中国地质调查局成都地质调查中 心,四川 成都 610081; 3. 四川里伍铜业股份有限公司,四川 康定 626200)

摘要: 江浪穹窿二叠系地层中发育一套顺层产出的变玄武岩,主要由角闪石(~80%)、斜长石(~15%)与少量的石英 (<3%)、磁铁矿(~2%)等组成,具有明显的枕状构造。为深入探讨变玄武岩的岩石成因,本文对其进行了主微量 元素分析。结果显示,变玄武岩具有低的SiO₂(平均44.14%)与TiO₂(平均1.79%)含量、高的^TFe₂O₃(平均 13.95%)和MgO(平均11.64%)含量,Mg[#]值介于65.6~58.3;稀土配分型式显示为轻微的右倾型,Ce异常(Ce/Ce^{*} 平均0.89)与Eu异常(Eu/Eu^{*}平均1.03)不明显;富集大离子亲石元素Rb、Ba和U,亏损高场强元素Nb、P、Zr和 Hf;低的La/Sm值(2.71~2.26)、(Th/Ta)_{PM}值(1.36~1.14)与(La/Nb)_{PM}值(1.78~1.33)。综合分析认为,该套变 玄武岩属于洋底玄武岩,可能是古特提斯洋的洋壳残余。岩浆源区为亏损地幔混有少量的富集地幔组分,岩浆上升 侵位过程中没有遭受地壳物质的混染。与峨眉山低钛玄武岩(LT1)的对比显示,该套变玄武岩并非晚二叠世峨眉山 玄武岩。

关 键 词: 变玄武岩; 地球化学; 岩石成因; 二叠系; 江浪穹窿; 川西 中图分类号: P581 文献标识码: A

松潘-甘孜造山带和扬子板块西缘的接合带发 育多个穹隆状地质体(图1a),其中以江浪穹窿构造 层位发育较全、变形构造最具代表性^[1]。前人将江 浪穹窿的基本结构划分为前寒武纪堆垛层(中元古 界里伍岩群)、古生代褶叠层(奥陶系江浪岩组、志 留系甲坝岩组与二叠系乌拉溪组)及三叠系西康群 板岩带^[1-2],其间发育一系列顺层韧性剪切滑脱带 (图1b)。近年来,随着找矿力度的加大,在穹窿核 部地层里伍岩群中发现了一系列高品位(平均为 2.5%^[3])的Cu-Zn多金属矿床(图1b)。因此,江浪 穹窿的基础地质问题已引起地质学家的极大关注。 然而,目前尚无资料可以揭示各地层系统的成岩构 造背景。

野外地质调查显示,江浪穹窿的二叠系地层之 中发育一套顺层产出的变玄武岩(图 2a),表明二叠 系是同沉积-火山作用的产物。迄今为止,未见相关 文献对变玄武岩的地球化学特征进行报道。本文 基于野外地质工作及室内岩相学观察,结合岩石地 球化学分析,深入探讨了变玄武岩的岩石成因以及 二叠系的成岩构造背景。

1 地质背景

江浪穹窿位于青藏高原东部 地处松潘-甘孜造 山带东南缘和扬子陆块西缘的接合部位(图 1a)。

收稿日期: 2015-10-20; 改回日期: 2015-11-21

作者简介: 陈道前(1965 -) , 男, 博士生, 副教授, 从事地质学和矿物学研究。E-mail: lwty2009@163.com

通讯作者: 张惠华(1968 -) , 男 高级工程师 , 矿产勘查专业。E-mail: 310432799@ qq. com

资助项目:中国地质调查局矿产资源评价项目(1212011085139)、成都地质调查中心青年科学基金项目(所控基[2015] -05)资助

图1 江浪穹窿大地构造位置及区域地质图^[4]

Fig. 1 Tectonic setting (a) and simplified geological map (b) of the Jianglang dome in western Sichuan (modified from Yan D P et al., 2003)

穹隆总体为一个北北西向的短轴背斜,长轴约25 km,短轴约20 km。各地层内部具紧闭同斜褶皱、顺 层掩卧褶皱、等厚开阔褶皱等,穹窿核部广泛存在 顺层韧性剪切带^[5]不同地层单元之间发育环状拆 离断裂带^[4]。

穹窿核部地层为中元古界地层里伍岩群,岩性 以(石榴) 云母片岩、(石榴) 云母石英片岩及(云 母) 石英岩为主,夹较多透镜条带状变基性火山岩, 原岩主要为一套含火山凝灰质的砂、泥质浊流沉积 岩夹基性火山岩组合。翼部地层包括奥陶系江浪 岩组、志留系甲坝岩组、二叠系乌拉溪组及三叠系 西康群(图1b):(1) 江浪岩组仅分布于江浪穹隆南 缘,与里伍岩群和甲坝岩组为滑脱断层接触。底部 主要为含砾石英岩夹少量黑云石英岩、绢云(二云) 石英片岩,上部为绢云(石英) 千枚岩及黑云石英 岩,主体构成一个规模较大的韧性剪切滑脱带;(2) 甲坝岩组沿江浪穹隆周缘呈环状分布,为一套海相 的变基性火山岩与变硅质(泥) 岩及少量炭质板岩 组合;(3) 二叠系乌拉溪组主要分布于江浪穹隆外 缘,与甲坝岩组呈滑脱断层接触,岩性为大理岩、变 硅质岩夹变基性火山岩;(4)三叠系西康群以变石 英粉砂岩、黑云石英岩与黑云(二云)石英片岩为 主,夹细粒变长石石英砂岩及厚层块状大理岩,与 乌拉溪组为平行不整合接触或韧性剪切带 接触^[16]。

江浪穹隆及周缘岩浆活动频繁,发育花岗岩与 少量基性岩、超基性岩。穹窿东北侧出露文家坪花 岗岩体(图1b) 岩性为中细粒似斑状黑云二长花岗 岩,其锆石²⁰⁶Pb/²³⁸U加权平均年龄为161.5±0.6 Ma^[7]。喷发相主要为中一新元古代及二叠纪基性 火山岩^[1-2]。

2 样品采集与测试

2.1 岩相学

野外地质调查显示,二叠系地层中变玄武岩与 大理岩、变硅质岩为整合产出(图2a)。 变玄武岩呈 灰绿色,发育明显的枕状构造(图2b)与杏仁状构 造。岩石具中细粒粒状结构、块状构造;矿物组成主

图 2 江浪穹窿二叠系变玄武岩野外及镜下特征 Fig. 2 Field and microscopic features of the Permian metabasalts in the Jianglang dome

要为:(1)角闪石含量约80%,呈柱状或粒状,粒径 1000~50 μm,可见两组解理呈锐角相交,局部已退 变质为绿泥石;(2)斜长石含量约15%,呈它形粒状 或自形板状,粒径200~10 μm,局部可见聚片双晶; (3)石英含量 <3%,呈它形粒状,粒径约30 μm; (4)磁铁矿含量约2%,呈粒状产出,粒径100~50 μm(图2c、d)。

2.2 测试方法

变玄武岩样品经室内挑选新鲜、蚀变较弱者碎 样至 200 目后进行岩石地球化学分析,主微量元素 测试在国土资源部西南矿产资源监督检测中心完 成。主量元素分析仪器为荷兰帕纳科公司生产的 AXIOS-X 荧光光谱仪;稀土、微量元素分析仪器为 加拿大 PerkinElmer 公司制造的四级杆型电感耦合 等离子质谱 Q-ICP-MS,仪器型号 ELADRC-e。变玄 武岩主微量元素分析数据列于表 1。

3 岩石地球化学

3.1 主量元素

变玄武岩 SiO₂含量介于 45.42%~40.80%,平均44.14%; TiO₂含量1.94%~1.60%,平均1.79%; Al₂O₃含量13.24%~10.31%,平均11.31%; ^TFe₂O₃含量15.76%~11.71%,平均13.95%; MnO 含量0.20%~0.14%,平均0.17%; MgO 含量13.92%~8.25%,平均为11.64%; CaO 含量16.73%~10.51%,平均为12.42%; Na₂O 含量2.22%~1.08%,平均为12.55%; K₂O 含量0.77%~0.24%,平均为0.47%; P₂O₅含量0.17%~0.14%,平均为0.15%。TAS 图解与 Zr/TiO₂-Nb/Y 图解显示变玄武岩为亚碱性玄武岩(图3)。

3.2 稀土元素

变玄武岩稀土元素中 La(平均为 11.5 μg/g)、 Ce(平均为 26.0 μg/g)、Nd(平均为 19.3 μg/g)具 有较高的含量,其它元素均低于 10 μg/g。稀土元 素总量 ΣREE 为 96.7 ~75.2 μg/g,平均为 83.3 μg/ g; (La/Yb)、介于 4.93 ~ 3.77 之间,平均为 4.36。 18

Na2O+K2O(wt%)

球粒陨石标准化稀土元素配分型式显示为轻微的 右倾型(图4a),不具有强烈的 Ce 异常(Ce/Ce^{*} = 0.95~0.81,平均为0.89) 与 Eu 异常(Eu/Eu^{*} = 1.14~0.90,平均为1.03)。

图 3 江浪穹窿二叠系变玄武岩主量元素图解 Fig. 3 Major element diagrams of the Permian metabasalts in the Jianglang dome

3.3 微量元素

变玄武岩中微量元素 Sr(平均为 194 μg/g)、Ba
(平均为 150 μg/g)、V(平均为 363 μg/g)、Cr(平均 为 806 μg/g)、Co(平均为 68.7 μg/g)、Ni(平均为 403 μg/g) 等具有较高含量,其它元素含量均低于 50 μg/g。在原始地幔标准化微量元素蛛网图中,变 玄武岩明显富集大离子亲石元素 Rb、Ba 和 U 等,亏 损高场强元素 Nb、P、Zr 和 Hf(图 4b)。

图 4 江浪穹窿二叠系变玄武岩稀土元素配分图及微量元素蛛网图 标准化数据据文献^[8] 和^[9]. 峨眉山 LT1 数据引自文献^[10] Fig. 4 Chondrite-normalized REE distribution patterns and trace element spidergram of the Permian metabasalts in the Jianglang dome (after Taylor et al., 1985; Sun et al., 1989; Xiao L et al., 2004)

4 岩石成因

4.1 是否属于峨眉山玄武岩?

峨眉山大火成岩省玄武岩浆活动发生于晚二 叠世~260 Ma^[11]。一些学者提出峨眉山玄武岩包括 高钛(HT type,Ti/Y > 500,Mg[#] = 31 ~ 53) 与低钛 (LT type,Ti/Y < 500,Mg[#] = 44 ~ 67)两种类型^[10], 而低钛系列又可以进一步划分为 LT1(Mg[#] = 51 ~ 67,Nb/La < 0.9)和 LT2(Mg[#] = 44 ~ 54,Nb/La > 1.1)。本文的岩石地球化学分析数据表明(表1), 江浪穹窿二叠系变玄武岩 Ti/Y 值介于 519~478 (平均为 495),Mg[#]为 65.6~58.3(平均为 62.0), Nb/La 值介于 0.78~0.58(平均为 0.67),与峨眉山 LT1 相当。然而,变玄武岩样品与峨眉山 LT1 的稀 土、微量元素配分型式截然不同(图 4) 暗示二者化 学成分存在显著差异,即江浪穹窿二叠系变玄武岩

rable 1 1ra	ce element (wi ∞) and	trace elem	ent (µg/g) (contents in the	rerman metaba	asalts in the Jia	inglang dom
样号	Gs-1	Gs-2	Gs-3	Gs-5	CMP35-1	CMP35-2	CMP35-3	CMP35-
SiO_2	45.11	40.80	44.35	45.42	43.64	45.07	44.46	44.30
TiO ₂	1.81	1.61	1.86	1.90	1.60	1.85	1.74	1.94
Al_2O_3	11.12	11.61	11.78	10.76	10.31	13.24	10.65	11.01
^T Fe ₂ O ₃	14. 87	11. 71	15.23	14. 49	12.23	12.26	15.06	15.76
MnO	0.20	0.16	0.16	0. 19	0.14	0.14	0.16	0.17
MgO	13.36	8.25	12.94	13.92	8.62	10.10	12.40	13. 52
CaO	11.06	16. 73	10.78	10. 54	15.32	12.42	12.00	10.51
Na ₂ O	1.28	2. 22	1.22	1.30	2.08	2.09	1.14	1.08
K ₂ O	0.24	0. 29	0. 77	0.47	0.41	0.42	0.63	0. 55
P ₂ O ₅	0.14	0.16	0.14	0.16	0.15	0.17	0.14	0.15
LOI	0.85	6.40	0.74	0.96	5.30	2.22	1.80	1. 19
Total	100.04	99.94	99.97	100.11	99.80	99.98	100.18	100.18
Mg#	64.06	58.30	62.77	65.60	58.31	62.06	62.04	63.00
FeO	10.90	7.99	10.89	10.94	7.00	7.05	9.04	8.90
La	10.1	10.8	9, 66	11.8	10. 9	13.2	11.7	13.6
Ce	24.5	25.2	24 0	27.7	23.2	28.5	25.6	29.4
Pr	3 59	3 59	3 60	3.94	4 14	4 99	4 50	5 09
Nd	17.2	17.0	17 1	18.4	18.8	22.7	20.3	22.8
Sm	4.10	3.00	1 23	4 40	10.0	5.76	5.08	5 74
- Sill	4.10	1.47	4.23	1.63	4.80	1.07	1.74	1.86
C.J.	4.52	1.47	1. 52	1.03	1.01	5.61	5.10	5 59
TL	4.33	4. 29	4.00	4.99	4.09	5.01	5.10	5.30
10 D	0.78	0.72	0.77	0.80	0.93	1.10	1.01	1.10
Dy	4. 57	3.94	4.42	4.55	4. 28	5.11	4. 68	5.12
Ho	0.84	0.72	0.89	0.84	1.13	1. 32	1.23	1. 33
Er	2.20	1.96	2.26	2.19	1.98	2.28	2.16	2.31
Tm	0.32	0.27	0.30	0.31	0.34	0.39	0.37	0.40
Yb	1.67	1.48	1.73	1.64	1.70	2.02	1.94	2.09
Lu	0. 22	0. 21	0. 23	0.24	0.20	0.25	0.24	0.26
ΣREE	76.2	75.6	75.2	83.5	78.6	95.2	85.7	96.7
(La/Yb) _N	4.09	4.93	3.77	4.86	4.32	4.41	4.08	4. 39
Ce/Ce*	0.95	0.95	0.95	0.95	0.81	0. 82	0.83	0.83
Eu/Eu*	1.14	1.08	0.90	1.05	1.03	1.05	1.03	0. 99
Rb	3.62	5.71	20.3	12	10. 7	8.44	17.8	11.7
Sr	53.3	430	37.8	75.7	278	551	90.3	34.2
Ba	60.9	262	155	155	206	70.2	192	99.0
Nb	7.86	7.18	7.54	8.04	6.97	8.45	6.94	7.94
Та	0. 53	0. 47	0. 52	0. 54	0.60	0.70	0.62	0.71
Zr	17.0	28.1	15.5	15.1	33.1	23.9	20.1	22. 1
Hf	0.71	0.91	0.76	0. 66	0.66	0.54	0.50	0.54
Th	1.48	1.15	1.34	1.34	1.42	1.74	1.59	1.76
U	0.35	0.73	0.48	0. 25	0.58	0.45	0. 52	0.50
Y	21.9	19.3	21.5	22.0	19.7	23.1	21.8	23.8
V	380	331	397	363	313	375	356	388
Cr	785	748	898	933	966	754	769	594
Со	74.3	66.0	79.8	73.0	69.9	61.9	62.4	62.3
Ni	377	362	433	421	526	386	390	328
Ti/Y	495	500	519	518	486	479	478	488
Na/La	0.78	0.66	0. 78	0.68	0.64	0.64	0.59	0.58
La/Sm	2.46	2.71	2. 28	2.63	2.26	2. 29	2.30	2. 37
Th/Ta) _{PM}	1.36	1.17	1, 25	1, 19	1. 14	1, 20	1.24	1.20
(La/Nh)	1.20	1.50	1.20	1.52	1.0	1.20	1.21	1.20

表1 江浪穹窿二叠系变玄武岩主量、微量元素分析结果

注: 主量元素单位 wt% ,为质量分数; 微量元素单位 ug • g⁻¹; Mg[#] = 100Mg/(Mg + ΣFe) ,用原子个数比计算; Ce/Ce^{*} = 2Ce_N/(La_N + Pr_N),Eu/ Eu^{*} = 2Eu_N/(Sm_N + Gd_N) ,球粒陨石标准化数据引自文献[8]; 表中原始地幔标准化数据据文献[9] 并非峨眉山大火成岩省玄武岩浆活动的产物。

4.2 构造背景

江浪穹窿二叠系地层主要由大理岩、变硅质岩 与变玄武岩组成,三者为整合接触关系(图 2a),表 明该套变玄武岩为同沉积-火山作用的产物,应当形 成于深海环境。根据本文的主微量元素测试数据, TiO₂-K₂O-P₂O₅图解显示江浪穹窿二叠系变玄武岩 形成于大洋环境(图 5a),Ti-Cr与V-Ti图解则进一 步表明该玄武岩属于洋底玄武岩(图 5b、5c)。已有 的研究表明,松潘-甘孜造山带形成于古特提斯洋闭 合阶段^[12],而古特提斯洋的闭合时间已被限定为晚 三叠世末—早侏罗世初^[13]。本文对江浪穹窿二叠 系变玄武岩构造环境的判别结果显示,古特提斯洋 盆在二叠纪时期确实还没有闭合,而该套变玄武岩 或许正是古特提斯洋的洋壳残余。

4.3 岩浆演化

构造环境判别显示,江浪穹窿二叠系变玄武岩 属于洋底玄武岩(图5),而洋底玄武岩源区形成的 岩石通常被认为是板内环境软流圈地幔部分熔融 的结果^[14]。变玄武岩具有低的SiO₂含量(45.42% ~40.80%,平均为44.14%)、高的^TFe₂O₃(15.76%~ 11.71%,平均为13.95%)与MgO(13.92%~ 8.25%,平均为11.64%)含量,Mg[#]值变化范围较大 (65.6~58.3,平均为62.0)且低于原生玄武岩(Mg[#] =70^[15]),表明其不可能是原始地幔和亏损的软流 圈地幔直接熔融形成,应该是演化岩浆的产物。变 玄武岩富集大离子亲石元素和轻稀土元素、亏损高 场强元素(图4),暗示岩浆受到了地壳物质或者是 富集岩石圈地幔物质的混染。

众所周知,高的 La/Sm 值(>4.5) 指示了地壳 物质的混染^[16]; 变玄武岩的 La/Sm 值介于 2.71 ~ 2.26(平均为2.41 表1) 表明岩浆侵位过程中可能 没有遭受地壳物质的混染。一般而言,岩浆混入上 地壳物质之后,(Th/Ta)_{PM}值与(La/Nb)_{PM}值均在 2 以上^[17]; 变玄武岩样品(Th/Ta)_{PM}值为1.36~1.14, 平均为1.22 (La/Nb)_{PM}值介于 1.78~1.33,平均为 1.56(表1) 同样排除了地壳混染的可能性。因此, 本文认为变玄武岩的地球化学特征(富集大离子亲 石元素、亏损高场强元素) 仅与富集岩石圈地幔组 分的加入相关。在 Nb-Zr 地幔类型判别图解^[18]上, 所有样品的落点均临近亏损地幔、远离富集地幔 (图6) 暗示玄武质岩浆演化过程中富集岩石圈地 幔组分的加入量十分有限。

哈克图解显示 ,变玄武岩样品主量元素之间存

图 5 江浪穹窿二叠系变玄武岩构造环境判别图解 Fig. 5 Tectonic discrimination diagrams of the Permian

metabasalts in the Jianglang dome

在线性关系(图7) 显示了同源演化的特点,说明形 成过程中发生了一定程度的结晶分异作用。然而, 岩石具有高的 MgO(平均为11.64%)、Cr(平均为 806 μ g/g)、Co(平均为68.7 μ g/g)与 Ni(平均为 403 μ g/g)含量(表1),表明母岩浆分异程度相对较 低^[19]。变玄武岩 MgO 与 TiO₂、^TFe₂O₃含量为正相 关关系(图 7a、b),可能由于钛铁矿的分离结晶造 成。MgO 与 CaO 含量呈负相关(图 7d),表明斜长 石在岩浆结晶分异过程中不是主要的堆晶矿物^[20]; 这与变玄武岩稀土配分型式缺乏 Eu 负异常(Eu/ Eu^{*} = 1.14~0.90,平均为1.03)完全吻合(图4a)。 此外 样品 Co、Ni 含量普遍较高且与 MgO 含量无明 显相关性 表明橄榄石的分离结晶作用不明显。

5 结论

江浪穹窿二叠系变玄武岩属于洋底玄武岩,可 能是古特提斯洋的洋壳残余。该变玄武岩并非晚 二叠世峨眉山玄武岩浆活动的产物。岩浆源区为 亏损地幔混有少量的富集岩石圈地幔组分,岩浆上 升侵位过程中没有遭受地壳物质的混染,可能主要 经历了钛铁矿的结晶分异作用。

图 6 江浪穹窿二叠系变玄武岩 Nb-Zr 地幔类型判别图解 Fig. 6 Nb vs. Zr discrimination diagram of the mantle types for the Permian metabasalts in the Jianglang dome

图 7 江浪穹窿二叠系变玄武岩主量元素哈克图解

Fig. 7 Harker diagrams of the major elements in the Permian metabasalts in the Jianglang dome

参考文献:

- [1] 颜丹平,宋鸿林,傅昭仁,等.扬子地台西缘变质核杂岩带[M].北京:地质出版社,1997.
- [2] 傅昭仁,宋鸿林,颜丹平.扬子地台西缘江浪变质核杂岩结构 及对成矿的控制[J].地质学报,1997,71(2):113-122.
- [3] 冯孝良,刘俨松,张惠华,等.四川九龙县里伍铜矿包裹体研 究[J]. 沉积与特提斯地质 2008 28(2):1-11.
- [4] YAN D P ZHOU M F ,SONG H L ,FU Z R. Structural style and tectonic significance of the Jianglang dome in the eastern margin of

the Tibetan Plateau ,China [J]. Journal of Structural Geology , 2003 25(5):765-779.

- [5] 张惠华,冯孝良,唐高林,等.四川省九龙县中咀铜矿构造与 成矿关系研究[J].高校地质学报 2013,19(1):95-108.
- [6] 四川省地质矿产局.四川省区域地质志[M].北京:地质出版 社,1990.
- [7] 周家云,谭洪旗,龚大兴,等.川西江浪穹隆核部新火山花岗 岩 LA-ICP-MS 锆石 U-Pb 定年和 Hf 同位素研究 [J]. 矿物岩 石 2013 33(4):42 - 52.
- [8] TAYLOR S R , MCLENNAN S M. The continental crust: Its

composition and evolution [M]. Oxford: Blackwell ,1985.

- [9] SUN S S ,MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989 42: 313 – 345.
- [10] XIAO L ,XU Y G ,MEI H J ,ZHENG Y F ,HE B ,PIRAJNO F. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province SW China: Implications for plume-lithosphere interaction [J]. Earth and Planetary Science Letters 2004 228(3-4):525 - 546.
- [11] XU Y G ,CHUNG S L ,JAHN B M ,WU G Y. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China [J]. Lithos 2001 , 58: 145 – 168.
- [12] 许志琴,侯立玮,王宗秀. 中国松潘带的造山过程[M]. 北 京: 地质出版社,1992.
- [13] 莫宣学 潘桂棠.从特提斯到青藏高原形成:构造一岩浆事件的约束[J].地学前缘 2006 ,13(6):43-51.
- [14] 夏林圻,夏祖春 徐学义,等.天山石炭纪大火成岩省与地幔 柱[J].地质通报 2004 23(9/10):903-910.
- [15] DUPUY C , DOSTAL J. Trace element geochemistry of some continental tholeiites [J]. Earth and Planetary Science Letters, 1984 67(1):61-69.
- [16] LASSITER J C ,DEPAOLO D J. Plume/lithosphere interaction in

the generation of continental and oceanic flood basalts: Chemical and isotopic constraints [A]. Mahoney J. Large Igneous Provinces: Continental ,Oceanic ,and Planetary Flood Volcanism [C]. Washington: American Geophysical Union ,1997. 335 – 355.

- [17] PENG Z X ,MAHONEY J ,HOOPER P ,HARRIS C ,BEANE J. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps [J]. Geochimica et Cosmochimica Acta , 1994 58: 267 – 288.
- [18] ROEX A P L ,DICK H J B ,ERLANK A J ,REID A M ,FREY F A ,HART S R. Geochemistry ,mineralogy and petrogenesis of lavas erupted along the southwest indian ridge between the bouvet triple junction and 11 degrees east [J]. Journal of Petrology , 1983 24(3):267 - 318.
- [19] LIU S ,HU R Z ,GAO S ,FENG C X ,QI L ,ZHONG H ,XIAO T F , QI Y Q , WANG T , COULSON L M. Zircon U-Pb geochronology and major ,trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong province ,east China: Constrains on their petrogenesis and geodynamic significance [J]. Chemical Geology 2008 255(3): 329 – 345.
- [20] GAETANI G A ,GROVE T L ,BRYAN W B. The influence of water on the petrogenesis of subduction related igneous rocks [J]. Nature ,1993 365: 332 - 334.

Geochemistry and petrogenesis of the Permian metabasalts in the Jianglang dome, western Sichuan

CHEN Dao-qian¹ , ZHANG Hui-hua² , FENG Xiao-liang² , TANG Gao-lin³ , DAI Yan-pei² , LI Tongzhu²

(1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 2. Chengdu Center, China Geological Survey, Chengdu 610081, Sichuan, China; 3. Liwu Copper Mining Company, Garze 626200, Sichuan, China)

Abstract: A succession of bedded metabasalts occurs in the Permian strata in the Jianglang dome , western Sichuan. These rocks have well-defined pillow structures , and are composed mainly of hornblende (~ 80%) , plagioclase (~15%) and minor quartz (<3%) and magnetite (~2%). The results of research in this study have disclosed that the metabasalts are characterized by low SiO₂(an average of 44.14%) and TiO₂(an average of 1. 79%) , high ^TFe₂O₃(an average of 13.95%) and MgO (an average of 11.64%) ; slightly right-leaning REE distribution patterns and unmarkedly Ce and Eu anomalies; enrichment of large ion lithophile elements Rb , Ba and U , and depletion of high field strength elements Nb , P ,Zr and Hf; low La/Sm ratios (2.71 - 2.26) , (Th/Ta) _{PM} ratios (1.36 - 1.14) and (La/Nb) _{PM} ratios (1.78 - 1.33). The above-mentioned results show that the Perian metabasalts in the Jianglang dome may be assigned to ocean-floor basalts , and remnants of palaeo-Tethyan oceanic crust. The magmas may be derived from the depleted mantle mixed with minor enriched mantle components , and were not contaminated with crustal matter during the ascending processes. Instead , they may be subjected to the crystallization differentiation of ilmenite. Compared with the Emeishan basalts , the metabasalts in the study area are not the products of the Late Permian Emeishan basaltic magma activities.

Key words: metabasalt; geochemistry; petrogenesis; Permian; Jianglang dome; western Sichuan