文章编号: 1009-3850(2010) 02-0066-07

用 MoTOC相关性估算海相泥质烃源岩原始 有机碳的一种新方法

一以藏南白垩系海相泥岩、页岩为例

熊国庆,江新胜,伍 皓

(成都地质矿产研究所,四川成都 610081)

摘要:本文引入一种原始有机碳恢复的新方法,即利用 MoTOC相关性来估算海相泥质烃源岩原始有机碳。并以藏 南地区白垩纪海相泥岩、页岩为例,估算其原始有机碳含量及有机碳损失率。该方法可能在我国高成熟度 过成熟烃 源岩的评价和油气资源量预测中发挥重要的作用。

关 键 词: 有机碳; 烃源岩; 高成熟度 过成熟度; ^{Mo_TOC}相关性; 藏南地区; 白垩纪; 海相泥岩、页岩 中图分类号: ^{TEI} 22 2⁺ 15 文献标识码: ^A

有机碳和生烃潜力是评价烃源岩和沉积盆地油 气资源的两个最重要最基本的有机地球化学指标。 对高成熟度 过成熟烃源岩来说,若用残余有机质丰 度按通常标准进行评价,就会把有机质类型好,排烃 量大的好烃源岩划为差烃源岩或非烃源岩。因此, 对高成熟度 过成熟烃源岩进行生油评价或预测油 气资源量时,需恢复其原始有机碳和原始生烃潜力。 传统的有机质丰度恢复方法主要有热模拟实验方法 和加水热压模拟实验方法。按镜质体反射率 Rop 降 解潜率 CP/TOC及干酪根 H/C(原子比) 三种成熟度参数进行恢复,恢复的有机碳结果很接近,最大误 差都在 13% 以内; 降解潜率 CP/TOC及干酪根 H/C (原子比)恢复的生烃潜力结果比较接近,其误差在 20%以内。镜质体反射率 Ro恢复结果大部分情况 下与其他两种方法接近,某些情况下差别较大。干 酪根 H/C(原子比)恢复结果与降解潜率 CP/TOC 接近,一般也比较准确,但分离制备纯度较高的干酪 根工作量很大,需花费大量人力、物力,不适合大量 样品的原始有机质丰度恢复。相比之下,热解分析

方法快速,用样量很少,分析结果比较可靠,资料易 于取得,可用于大量样品的原始有机质的恢复。

关于有机碳及生烃潜力的恢复国外的研究报道 较少,主要是我国的学者做了大量的研究工作^[1~8]。 这是因为在我国华北、华南、塔里木盆地等地区大面 积分布着中元古界、新元古界和下古生界演化程度 已达高成熟度 过成熟的烃源岩。随着我国石油勘 探开发事业的不断发展,需要对这类高成熟度 过成 熟烃源岩进行正确评价和油气资源量预测,青藏高 原烃源岩大都进入高成熟度阶段,部分已达到过成 熟阶段,为了对各层系烃源岩进行正确评价和油气 资源量预测,恢复烃源岩的原始有机质丰度乃是当 务之急^[9]。

1 原始有机质丰度及传统恢复方法

1.1 原始有机质丰度及影响因素

烃源岩生油门限前未大量生烃、排烃时的有机 碳和生烃潜力称为原始有机质丰度,而通常我们所 测得的是烃源岩生烃、排烃后的残余有机质丰度。

资助项目: 国家自然科学基金 (批准号: 40372064)及中国地调局 "青藏高原构造 岩相古地理编图与研究"项目 (项目编号: 1212010610101)

收稿日期: 2010-06-10 改回日期: 2010-06-30

作者简介: 熊国庆 (1975—), 男, 工程师, 主要从事沉积学及地球化学研究。 E-mail hsiung 1975@ yahoo com cn

对低成熟度或成熟烃源岩来说,油气初次运移量 (排烃量)只占总有机质和生油量的一小部分,其有 机碳和生烃潜力基本上可以代表烃源岩的有机质丰 度和生油气能力的大小。随演化程度增加,油气生 成量和排烃量不断增大,而残余有机质丰度不断降 低,成熟度越高,有机质类型越好,降低的越多。对 高成熟度 过成熟烃源岩来说,若用残余有机质丰度 标准进行评价,就会把有机质类型好,排烃量大的好 烃源岩划为差烃源岩或非烃源岩。因此,对高成熟 度 过成熟烃源岩进行生油评价或预测油气资源量 时,需恢复其原始有机碳和原始生烃潜力^[9]。

机质丰度影响因素主要是地表风化作用、孔隙 流体交换、岩石 水相互作用、次生矿化过程、热作用 及变质作用等,同时沉积物的石化作用及深埋藏等 化学过程的变化也会影响^[10]。

1.2 原始有机质丰度传统恢复方法

恢复原始有机质丰度理论上最好采取自然剖面 法,即采集相同层位不同埋深(不同成熟度)的烃源 岩,实测有机碳和生烃潜力,然后求出不同成熟度烃 源岩原始有机质丰度的恢复系数。但这些样品的岩 性、岩相、有机质丰度和类型都应相似。而且要有从 未成熟到各个演化阶段的样品,显然这种系列样品 很难采集到^[9]。

有机质丰度恢复方法主要有热模拟实验方法和 加水热压模拟实验方法。通过按镜质体反射率 R9 降解潜率 CP/TOC及干酪根 H/C(原子比)三种成 熟度参数进行恢复。热模拟实验方法是恢复有机质 丰度的一种最重要的方法。用生油岩评价仪 (ROCK-EVAL)进行烃源岩的热解模拟实验,建立 恢复原始有机质丰度的公式是最简便实用的方法。 但该方法不能测定各演化阶段的油和气生成数量。 可高压釜进行的热压模拟实验,可以近似地模拟烃 源岩在地下的油气生成演化过程,也可以进行原始 有机质丰度的恢复^[9]。

通过比较,热解分析方法快速,用样量很少,分析结果比较可靠,资料易于取得,可用于大量样品的 原始有机质的恢复。镜质体反射率 R9降解潜率 CP/TOC及干酪根 H/C(原子比)三种成熟度参数恢 复的有机碳结果均很接近,最大误差都在13%以内, 生烃潜力用降解潜率 CP/TOC及干酪根 H/C(原子 比)恢复结果比较接近,其误差在20%以内。镜质 体反射率 R°恢复结果大部分情况下与其它两种方 法接近,某些情况下差别较大。可能是因为在生油 高峰前后恢复系数变化与镜质体反射率 R°变化速 度不一致,使得两者相关性不好,误差较大。用干酪 根 H/C(原子比)恢复结果与降解潜率 CP/TOC接 近,测量结果一般也比较准确,但分离制备纯度较高 的干酪根工作量很大,需花费大量人力、物力,不适 合大量样品的原始有机质丰度恢复。青藏高原海相 烃源岩大都缺少镜质组,测得是残余沥青反射率,沥 青成因复杂,所测得结果有时相差很大,在换算成镜 质组反射率时,换算公式也不尽相,因此该方法恢复 结果误差较大^[9]。

因此有必要寻求一种新的有机质丰度恢复方法,既方便快捷,又适合大量烃源岩样品分析。下面 将介绍一下 Mo_TOC相关性来估算海相泥质烃源岩 原始有机碳的这种新方法。

2 MoTOC相关性估算法

2.1 原理

Crusius et al (1996)^[10]认为还原条件下,相比 其它对氧化 还原环境敏感的微量元素, Mo是最富 集的,在海水中其含量变化从 5倍 (较 V含量)到 100倍 (较 Cd含量),碎屑物质来源及水体中氧化的 有机质颗粒来源的 Mo含量对整个沉积 Mo库的贡 献可以忽略不计^[11]。 Tribovillard(2004)^[12]的研究 结果表明,成岩作用过程中有机质固结的 МФЛ不 活动, MO和硫化有机质 (有机硫)之间的这种明显 关系在晚侏罗世之前的岩石中仍存在。但他们研究 的地质体都未遭受高热成熟度(至多处于油窗开始 的阶段)。 $M^{ongenot}$ 等 $(1996)^{[13]}$ 研究委内瑞拉白 垩纪 La Luna Formation高成熟度烃源岩中古环境标 志的微量元素后发现,成熟度和微量元素含量之间 没有关系,也与微量元素相对行为和绝对含量无关, 对看成富有机质沉积物古沉积环境指标的微量元素 (Ba P V Mo Ni Co Cu Cd C和 Mn)分布也不会 造成影响。可见 M°微量元素指标对遭受了后期成 岩 热蚀变、低级变质作用及地表风化等古代岩石的 原始组分的识别非常有用。

L^{yons}等 $(2003)^{[14]}$ 近来研究发现, Carjac2盆地 内现代静海缺氧沉积物中总有机碳 (TOC)与 Mo/Al 具很好的相关性。微层理深绿灰色细粘土岩 $(0-11.6 \text{ k}^{yr} \text{ BP})$ 的 TOC% = 1486× (Mo/A) + 2 8 $(n=13, \hat{\tau}=0.52)$, 平均沉积速率为 36 ^{cm}/ k^yr 不同的微层理深绿灰色粘土质泥岩 $(11.6-14.5 \text{ k}^{yr} \text{ BP})$ 的 TOC% = 1622× (Mo/A) + 0 22 $(n=15, \hat{\tau}=0.89)$, 平均沉积速率为 79 ^{cm}/ k^yr 因此, 可以用 (TOC)与 Mo/A 这种关系来估算 那些特征类似于现代 Cariaco沉积物的古代黑色页 岩^[15] (图 1)。

图 1 C^{arjaco}盆地 I区微层理深绿灰色粘土质泥岩 (11.6~14.5 k^{yr}BP)和 II区不同的微层理深绿灰色含 钙质微化石粘土的富有机质、硅藻的粘土质泥岩 (11.6~14.5 k^{yr}BP)统计数据及回归投点图^[15]

Fg 1 Regression plots and statistics for zone I m icrokminated dark olive gray organic rich silv clay (116-145 kyr BP); zone II distincly microlaminated dark olive gray organic rich diatom rich clayey mud with abundant caicareousmicrofossils clay(116-145 kyr BP) (after Wilde et al., 2004)

Algeon Lyons 2004)^[16]研究了四个深部水体 受限的环境 (闭塞盆地)的现代缺氧环境 (黑海, Fran varen Fjord Carjaco盆地和 Saanich Inle) 和一 个上涌区 (纳米比亚陆棚)的 Mo TOC相关性后认 为,与现代缺氧闭塞盆地水体受限有关的水 岩石变 量之间的强相关性表明,古代黑色页岩的 [M9 % TOC比值可以用来估算深水 [M9 aq含量及受限缺 氧古环境的时代。然而,这种相关性不能用于诸如 纳米比亚陆棚的大陆边缘上涌体系的开阔海相背景 缺氧相,因为该区域内水体交换不受限制。多数情 况下这种共相关性可能部分或全部会受到大量的易 变的生物成因沉积物流 (蛋白石或碳酸钙)稀释的 影响^[17~19]。为消除这种影响,通常将 Mo与 Al含 量进行标准化,因为 A 来自铝硅酸盐碎屑物质,作 为碎屑粘土含量的指标^[20]。

尽管目前用 MaTOC相关性指示古缺氧环境下 水文状况尽管仍不理想,但具很大的潜力。一种评 价缺氧古环境的新方法将利用那些可测量的客观标 准估算环境参数。如基于沉积过程中 MaTOC相关 性,从高受限的闭塞盆地(黑海)到弱受限的闭塞盆 地(Saanich Inle)及未受限的大陆边缘上涌体系(纳 米比亚陆棚)现代海相环境下持续变化的亚密度跃 层水体的受限程度,在古环境中能被估算。

22 实例

Will等(2001)^[10]用保守的相关性计算 [ape.

¹¹³洋下奥陶统初始 TOÇ Baltica 27个样品的初始 TOC为0 43% ~13.0%; 平均为4.44%; Avalonia板 块 8个样品的初始 TOC为0 3% ~5.5%; 平均为 1.3%。地质记录中岩石的计算值与古地理和古生 态相结合, 对古代海洋中碳合成的估算和储油岩的 初始烃潜力有用。

PeuckerEhrenbrink Hannigan (2000)^[21]和 Jaffe 等(2002)^[2]调查了黑色页岩风化期间铂族元素活 性和有机碳 Cash后发现,TOC比近表面大大的降低 (77%)^[22];由于生物成烷作用和低温羧化作用,有 机碳损失近 30%^[23]。从完全成熟阶段到有机质无 烟煤变质作用阶段(损失高达70%)的有机碳 Car的 热损失也是明显的^[24]。 Will 等 (2001)认识到 Corg 和 Mo之间的相关性,并用这种回归方程来估算一 套下古生代黑色页岩最低原始 Cag含量,这种相关 性在缺氧沉积物中也是普遍存在的。 Brumsack (1986)^[25]报道了 Cape Verde 盆地白垩纪黑色页岩 C_n 和 V, MQ Zn之间存在很高的相关性; A lgeo和 L^{yons}(2004)^[26]及 W^{eme}(2002)^[27]的研究也显示 了纽约西部泥盆纪静海缺氧页岩 С.和 М9А比值 之间极好的共相关性。 C ruse和 $L^{yons}(2004)^{[28]}$ 研 究艾奥瓦石炭纪 Swope灰岩的 Hushpuckney页岩段 C.和微量元素时、发现 IRC钻孔 C.和 Mo/Al甚至 包括 Zi和 Pb具很好的相关性,可能与它们直接随 硫化物矿物沉淀有关。

藏南地区位于雅鲁藏布江缝合带与藏南拆离系 带之间,区域构造上属于特提斯构造域东段印度板 块北缘,属冈瓦纳大陆的一部分^[29]。晚侏罗世到 早白垩世是东特提斯海盆形成和急剧扩张期,因断 陷拉伸,表现为强烈沉降的被动大陆边缘^[30~33],由 大规模海退转变为快速海侵^[34];晚白垩世,印度板 块向北漂移加速,喜马拉雅 特提斯海域开始关闭, 洋壳向欧亚板块之下俯冲^[35],表现为海水逐渐变浅 的海退过程,沉积物由深海相复理石转变为海相磨 拉石,一直延续至古新世。白垩纪海相地层沉积序 列上类似于艾奥瓦石炭纪 Swope诙岩序列^[28],为海 侵到海退的一次完整旋回。地球化学特征上显示沉 积氧化 还原环境较 Carjacc盆地更富氧一些,但总 体上仍为亚氧环境。因此该地区白垩纪海相泥、页 岩样品也符合 Mo-TCC相关性估算法条件。

3 藏南泥岩、页岩原始有机碳恢复

在藏南定日 岗巴盆地及江孜盆地两个主要海 相盆地内的 5条剖面上共采集暗色泥岩、页岩样品 25件。其中定日 岗巴盆地样品 16件,下白垩统样 品 7件,上白垩统样品 9件; 江孜盆地样品 9件,下 白垩统 7件,上白垩统 2件。所有全岩样品微量元 素 M⁻分析在核工业北京地质研究院分析测试研究 中心 HR-ICPMS(Element)上进行(Finnigan MAT 制造,仪器型号 6493),分析条件为温度 30°,湿度 30% RH 测试方法和依据为 DZ/T0223-2001(电感 耦合等离子体质谱(CPMS)方法通则。 A1Q3分析 在国 土资源 部西南 矿产资源 监督检 测中心的 CAP6300全谱直读等离子光谱仪上进行,检测环境 为温度 22°,湿度 60% RH 检测依据为 GB/T14506-1933. A元素含量是根据 A1Q含量换算而成。残 余有机碳(TOC)在中国石油西南油气田公司勘探开 发研究院地质实验室的 CS400碳硫分析仪上进行, 检测环境为温度 15[°], 湿度 50[%] RH 检测依据为 GB/Ti9145-2003。所有测试数据及分析结果分别 列入表 1中。表中 1号 ~16号样品来自定日 岗巴 盆地, 17号 ~25号为江孜盆地内样品, 地层时代均 从老到新。

3.1 原始有机碳恢复

按照 Caria^{co}盆地 0~11.6^{kyr} BP和 11.6~ 14.5 k^{yr}B內两套岩石有机碳估算的回归方程,表 1中列出了藏南地区白垩系海相泥岩、页岩的原始 有机碳(TOC)含量。

研究区内 25个岩石样品按照 0~11.6 k^{yr} BP 时间内 $TOC_{\%} = 1486 \times (M \circ A)$ +2.8(1)回归方

表 1 藏南地区白垩纪泥岩、页岩残余有机碳和 Mo元素含量及分析结果

 $Table 1 \quad C \text{ on tents of residual organic carbon and the element M o from the C retaceous mudstones and shales in southern X izang$

序号	样品编号	地层	时代	TOC(测)	Mo/%	A1%	M%A1	TOC(计)1	TOC损失率	TOC(计)2	TOC损失率
1	GCP2-GS1	古错组	Қ	0.20	2, 45	10, 37	0. 002363	3 37	0.95	4, 05	0, 95
2	GCP3-GS1	古错组	Қ	0 12	0. 94	10. 31	0. 000916	1 58	0 92	1. 71	0. 93
3	GCP4-GS	古错组	K,	0 23	0. 99	11. 33	0. 000869	1.51	0.85	1. 63	0.86
4	GDK2-GS1	察且拉组	K	0 31	0. 30	5. 33	0. 000557	1 05	0 70	1. 12	0. 72
5	GDK3-GS1	察且拉组	K	0 23	0. 27	5. 03	0. 000543	1 03	0 78	1. 10	0. 79
6	GDK5-GS1	察且拉组	қ	0 20	0. 20	4. 63	0. 000432	0 86	0 77	0. 92	0. 78
7	GDK6-GS1	察且拉组	Қ	0 19	0. 35	4. 14	0. 000848	1 48	0.87	1. 60	0. 88
8	GZK13-GS	岗巴村口组	K ₂	0 12	0.46	3. 53	0. 001289	2 14	0 94	2. 31	0. 95
9	GZK18-GS	岗巴村口组	K ₂	0 11	1. 03	1. 74	0. 005920	9 02	0 99	9.82	0. 99
10	DMP1-GS1	岗巴群上段	K ₂	0 75	1.14	6.67	0. 001709	2 76	0 73	2. 99	0. 75
11	DMP2-GS1	岗巴群上段	K ₂	0 30	0. 47	8.04	0. 000590	1 10	0 73	1. 18	0. 75
12	DMP3-GS1	岗巴群上段	K ₂	0 40	0.3	7. 53	0. 000409	0 83	0 52	0. 88	0. 55
13	DMP4-GS1	岗巴群上段	K ₂	未做	0. 90	5. 24	0. 001721	2 78		3. 01	
14	DMP5-GS1	岗巴群上段	K ₂	0 23	0. 43	7.01	0. 000613	1 13	0 80	1. 21	0. 81
15	DMP7-GS1	岗巴群上段	K ₂	未做	0.46	3. 12	0. 001458	2 39		2. 58	
16	DMP9-GS1	岗巴群上段	K ₂	0 19	0. 24	4. 64	0. 000509	0 98	0 81	1. 05	0. 82
17	JBK6-GS1	甲不拉组	К	0 90	0. 65	10. 13	0. 000643	1 17	0 23	1. 26	0. 29
18	JBK6-GS2	甲不拉组	K	0 80	1. 20	10. 16	0. 001181	1 98	0 59	2.14	0. 63
19	JBK9-GS1	甲不拉组	Қ	0 33	0.40	6. 59	0. 000607	1 12	0 71	1. 20	0. 73
20	JBK10-GS1	甲不拉组	қ	0 73	0. 62	9. 23	0. 000670	1 21	0 40	1. 31	0. 44
21	JBK11-GS1	甲不拉组	K,	0 54	0. 53	8. 09	0. 000653	1 19	0 55	1. 28	0. 58
22	JBK12-GS1	甲不拉组	K	0 61	0.60	7.11	0. 000837	1 46	0 58	1. 58	0. 61
23	JBK13-GS1	甲不拉组	Қ	0 66	0. 60	6. 81	0. 000874	1 52	0 57	1. 64	0. 60
24	JBK42-GS1	宗卓组	K ₂	0 40	0. 41	7. 73	0. 000527	1 00	0 60	1. 07	0. 63
25	JBK43-GS1	宗卓组	K ₂	0 40	0.48	9. 25	0. 000515	0 98	0 59	1. 06	0. 62

备注: 1 按照 TOC% = 1486×(M9A) + 2 8计算而得; 2 按照 TOC% = 1622×(M9A) + 0 22计算而得

程估算后的原始有机碳(TOC)变化范围为0.83% ~ 9.02%,平均为1.83%;盆地内下白垩统14个岩石样 品估算后的原始有机碳(TOC)变化范围为0.86% ~ 3.37%,平均为1.47%;盆地内上白垩统11个岩石样 品估算后的原始有机碳(TOC)变化范围为0.83% ~ 9.02%,平均为2.28%。定日 岗巴盆地内16个岩石 样品估算 后的 原始 有机 碳(TOC)变化 范围 为 0.83% ~9.02%,平均为2.13%; 江孜盆地内 9个岩 石样品估算后的原始有机碳(TOC)变化范围为 0.98% ~1.98%,平均为1.29%。

25个岩石样品按照 11.6~14.5 k^{yr} BP时间内 TOC% = 1622×(M \circ A) +0 22(2)回归方程估算 后的 原始 有 机 碳 (TOC) 变 化 范 围 为 0 88% ~ 9.82%, 平均为 1.99%; 盆地内下白垩统 14个岩石样 品估算后的原始有机碳(TOC) 变化范围为 0 92% ~ 4.05%, 平均为 1.61%; 盆地内上白垩统 11个岩石样 品估算后的原始有机碳(TOC) 变化范围为 0 88% ~ 9.82%, 平均为 2 47%。定日 岗巴盆地内 16个岩石 样品 估算 后的 原始 有机 碳 (TOC) 变化 范围 为 0 88% ~9.82%, 平均为 2 32%; 江孜盆地内 9个岩 石样品 估算后的原始有机碳(TOC) 变化范围为 1.06% ~2.14%, 平均为 1.39%。

从藏南地区白垩系海相泥岩、页岩原始有机碳 估算结果看,最小值为0.83%,最大值为9.82%,与 有利烃源岩产出层位一致,最大恢复结果的岩石样 品恰好位于白垩世中期的 Cenomanian— Turonian界 线附近。定日 岗巴盆地估算均值大于江孜盆地,说 明前者烃源岩较后者更有利;上白垩统估算均值大 于下白垩统,说明上白垩统烃源岩更有利。两种回 归方程估算结果相差不大,最大误差范围未超过 1%,说明该地区岩石样品适合该方法的原始有机碳 恢复。

3.2 TOC损失率

表 1中还列出了两种回归方程估算的有机碳, 藏南地区白垩系海相泥岩、页岩的有机碳(TOC)损 失率。研究区内 25个岩石样品按照 0~11.6 k^{yr} BP 时间内 TOC% = 1486×(M°/A) +2 8(1)回归方 程估算后的原始有机碳(TOC),其有机碳损失率变 化范围为 23% ~99%,平均为 70 3%;盆地内下白垩 统 14个岩石样品估算后的原始有机碳(TOC),其有 机碳损失率变化范围为 23% ~95%,平均为 67.6%; 盆地内晚白垩世 9个岩石样品估算后的原始有机碳 (TOC),其有机碳损失率变化范围为 52% ~99%,平 均为 74.6%。定日 岗巴盆地内 14个岩石样品估算 后的原始有机碳(TOC),其有机碳损失率变化范围为 53% ~99%,平均为 81%;江孜盆地内 9个岩石样品估算后的原始有机碳(TOC),其有机碳损失率 变化范围为 23% ~71%,平均为 53. 6%。

25个岩石样品按照 11. 6~14.5 k^{yr}BP时间内 TOC% = 1622×(M9A) + 0.22(2)回归方程估算 后的原始有机碳(TOC),其有机碳损失率变化范围 为 29% ~99%,平均为72.4%;盆地内下白垩统 14个 岩石样品估算后的原始有机碳(TOC),其有机碳损 失率变化范围为 29% ~95%,平均为69.9%;盆地内 上白 垩统 9个岩石样品估算后的原始有机碳 (TOC),其有机碳损失率变化范围为 55% ~99%,平 均为76.3%。定日 岗巴盆地内 14个岩石样品估算 后的原始有机碳(TOC),其有机碳损失率变化范围 为 55% ~99%,平均为82%;江孜盆地内 9个岩石样 品估算后的原始有机碳(TOC),其有机碳损失率变 化范围为 29% ~73%,平均为 57%。

藏南地区白垩系海相泥页岩原始有机碳估算值 后,其有机碳损失率最小损失率为23%,最大损失率 为99%。还可看出,定日 岗巴盆地泥、页岩损失率 要远大于江孜盆地,且上白垩统损失率大于下白垩 统。这与烃源岩好坏有关,最大损失率的岩石样品 恰好位于白垩世中期的 Cenomanjan—Turonjan界线 附近,为缺氧环境下最为有利的烃源岩。定日 岗巴 盆地烃源岩较江孜盆地更有利,上白垩统烃源岩较 下白垩统要好,故有机碳损失率均高于后者。

3.3 与传统方法估算结果对比

表 2中列出了定日 岗巴盆地各个层系泥质烃 源岩有机碳含量、风化校正和原始有机碳含量。从 表中可以看出,传统方法恢复后的泥质烃源岩原始 有机碳含量约为残余有机碳含量的 3倍,其有机碳 损失率约为 67%。

与传统方法恢复的原始有机碳相比, Mo TOC 相关性估算法恢复结果要略大一些, 有机碳损失率 更高一些。这种差异是新方法在藏南地区不适用, 还是新方法有未考虑到因素影响所致?还是传统方 法恢复结果本身就偏低了呢?需要开展其它地区的 进一步深入研究。同时该方法本次研究对象为泥质 烃源岩, 其对碳酸盐岩烃源岩是否适用, 尚需进一步 的研究。

4 认识和结论

引入了一种新的有机碳恢复方法,即 Mo-TOC 相关性估算法,介绍其相关原理及国外的应用实例。 $0.23 \sim 1.49(0.79)$

]6	le2 Organic matter abundances in the Tingri-Gam ba Basin (after Zhao Zhengzhang et						
	岩性	样品 /件	TOC% (残余)	TOC% (风化校正)	TOC% (原始)		
	泥岩	9	$0.25 \sim 1.49(0.88)$	0 38 ~2. 24(1 32)	0 75~4 47(2 64)		
	泥岩	6	$0.29 \approx 1.13(0.70)$	$0.44 \approx 1.70(1.05)$	$0.89 \sim 3.47(2.15)$		

表 2 定日 岗巴盆地有机质丰度数据表^[9]

Tab

以藏南地区白垩纪海相泥岩、页岩为例,展示了 Mo TOC相关性估算法如何估算其原始有机碳.并进行 了有机碳损失率的分析。可以归结为以下几点认识 和结论.

17

泥岩

时代 Κ I Т

(1)对于高成熟度 过成熟烃源岩来说,有机质 丰度恢复是必需的,也是必要的,否则不能对烃源岩 进行正确评价和油气资源量正确预测:

(2)与传统有机质丰度恢复方法相比, Mo_TOC 相关性估算法简便易行,适合大量烃源岩样品的分 析. 其恢复结果较传统方法略大一些. 其原因有待进 一步分析研究:

(3)从藏南地区按 MoTOC相关性估算法恢复 的原始有机碳及有机碳损失率来看,原始有机碳恢 复结果及有机碳损失率与烃源岩好坏有关, 越有利 的烃源岩恢复的原始有机碳含量越好,有机碳损失 率越大。

(4) Mo TOC相关性估算法在本次研究中的对 象为泥质烃源岩,对碳酸盐岩烃源岩是否适用,值得 下一步深入研究。

朱同兴研究员、冯心涛高工、张予杰工程师、王 晓飞助工及车队同志在野外工作期间给予的大力配 合和帮助,再次表示感谢。

参考文献:

- [1] 郝石生. 对碳酸盐生油岩有机质丰度及其演化特征的讨论 [].石油实验地质, 1984, 6(1): 17-24.
- [2] 邬立言, 顾信章. 热解技术在我国生油岩研究中的应用 []. 石 油学报, 1986, 7(2): 13-19
- [3] 庞雄奇,方祖康,陈章明.地史过程中的岩石有机质含量变化 及其计算[].石油学报, 1988, 9(1): 17-24.
- 王子文,赵锡嘏,卢双舫,等.原始有机质丰度的恢复及其意义 [4] [].大庆石油地质与开发, 1991, 10(4): 20-26
- [5] 金强. 生油岩原始有机碳恢复方法的探讨 [〕]. 石油大学学报 (自然科学版), 1989, 13(5); 1-10.
- [6] 刘宝泉. 成熟过成熟生油层原始有机质丰度、生烃潜力的恢复 及生油层下限值的确定 []. 华北石油管理局勘探开发研究 院, 1994.
- [7] 郝石生, 王飞宇, 高岗, 等. 下古生界高过成熟烃源岩特征和评 价[].中国石油勘探, 1996, 1(2): 25-32.
- [8] 程克明, 王兆云. 高成熟和过成熟海相碳酸盐岩生烃条件评价

方法研究[J.中国科学 D辑, 1996, 26(6): 537-543.

0 35 ~2. 34(1 19)

[9] 赵政璋, 李永铁, 叶和飞, 等. 青藏高原海相 烃源层的油气生成 [M.北京:科学出版社, 2000, 175-213, 579-580]

 $0\ 71 \sim 4\ 49(2\ 39)$

- CRUSUS J CALVERT Ş PEDERSEN Ţ DAVD Ş Rhenjum [10] and molybdenum enrichments in sediments as indicators of oxic suboxic and sulfidic conditions of deposition [J]. Earth and Planetaty Science Letters, 1996, 145(1-4): 65-78
- DEANWE, GARDNER J.V., PIPERSD Z. Inorganic geochemi [11] cal indicators of glacial interglacial changes in productivity and anoxia on the California continental margin J. Geochimica et Cosmochin ica A cta, 1997, 61(21): 4507-4518
- TR BOVILLARD N R BOULLEAU A LYONS Ţ BAUDN F. [12] Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales J. $Ch^{en \, ical}\,G^{eo \, logy}, 2004, 213(4): 385-401.$
- MONGENOT Ţ TR BOVILLARD N P, DESPRAIRIES Ą ELIS-[13] ABETH L V FATMA L D. Trace elements as palaeoenviron. mental markers in strong ly mature hydrocarbon source rocks the Cretaceous La Luna Formation of Venezuela []. Sedimentary Geology, 1996 103(1-2): 23-37.
- LYONS TW, WERNE, J.P. HOLLANDER D. J. MURRAY R.W. [14] Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic to anoxic transition in the Cariaco Basin Venezue a [J. Chem ica] G eology, 2003, 195(1-4): 131-157.
- W LDE P LYONS TW, QUINBY-HUNT M S Organic carbon [15] proxies in black shales molybdenum [J]. Chemical Geology, 2004, 206(3-4): 167-176
- AIGEO T J MAYNARD JB Trace element behavior and redox [16] facies in Core Shales of Upper Pennsylvanian Kansas. type Cyclothems []. Chem ica | Geo logy 2004 206 (3-4); 289-318
- MURPHY A E SAGEMAN B B HOLLANDER D J LYONS T [17] W, BRETT C E, Black shale deposition and faunal overturn in the Devonian Appalachian basin Clastic starvation seasonal water column mixing and efficient nutrient recycling [J]. Paleoceanography, 2000, 15(3): 280-291.
- SAGEMAN B B MURPHY A E WERNE JP VER SIRAETEN [18] C A HOLLANDER D J LYONS T W. A tale of shales the relative roles of production, decomposition and dilution in the accumulation of organic_rich strata, Middle-Upper Devonian, Appalachian basin [J. Chemical Geology, 2003, 195(1-4): 229 - 273
- TR BOVILLARDN, ALGEOT J LYONSŢ ARMELLE R Trace [19] metals as paleoredox and paleoproductivity proxies- An update
 - [J. Chemical Geology, 2006, 232 (1-2): 12-32

- [20] CALVERT S E PEDERSEN T F G exchemistry of recent oxic and anoxic marine sediments Implications for the geological record[J. Marine Geology 1993, 113 (1-2): 67-88.
- [21] PEUCKER-EHRENBRINK B HANN GAN R E Effects of black shale weathering on the mobility of then um and platinum group elements []. Geo bgy 2000 28(5): 475-478
- [22] JAFFE L A PEUCKER-EHRENBR NK B PETSCH S T Mobility of thenium, platinum group elements and organic cathon during black shale weathering J. Earth and Plane tary Science Letters, 2002, 198 (3-4): 339-353.
- [23] DURAND B MONIN J C Elemental Analysis of Kerogen (C H, Q, N, S, Fe) [A]. Durand B Kerogen [C]. Paris Editions Technip 1980 113-142
- [24] RAISWEIL R BERNER R A Organic carbon bases during burial and thermal maturation of normal marine shales [J]. Geo basy 1987, 15(9): 853-856.
- [25] BRUMSACK H J The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California [A]. Summer haves C P, Shackleton N J North A tlantic Palaeoceanography [C]. Geol Soc London, Spec Publ, 1986 21: 447-462.
- [26] ALGED T J LYONS T W, BLAKEY R Ç JEFFREY D Q Hydrographic conditions of the Devono- Carboniferous North American seaway inferred from sedimentary Mo. TOC relation. shiPs [J]. Palaeogeography Palaeoclimatology Palaeoecology 2007, 256 (3-4): 204-230
- [27] WERNE J.P. SAGEMAN B.B. LYONSTW, HOLLANDER D.J. An integrated assessment of a "type euxinio" deposit evidence

formultiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation [J]. Am. J. Sci. 2002. 302(1): 110-143

- [28] CRUSE A M, LYONS T W. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Cathoniferous) black shales [J. Chemical Geo bay 2004, 206 (3-4): 319-345
- [29] 史晓颖.藏南珠峰地区侏罗纪晚期至白垩纪早期层序地层序 列及沉积环境演化[A].第三届全国地层会议论文集编委会 编,第三届全国地层会议论文集[G].北京:地质出版社, 2000b 260-264
- [30] LIUGH, ENSELEG Sedimentary history of the Tethyan Basin in the Tibetan Himalayas [J]. Geol Rundschau, 1994, 83 (1): 32-61
- [31] JADOUL F BERRA F GARZANTI E The Tethy's Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet) [J. Journal of Asian Earth Sciences, 1998, 16(2-3): 173-194
- [32] SHIX Y YIN JR, JIA C P Mesozoic and Cenozoic sequence stratigraphy and sea level changes in the northern Himalayas South Tiber China [J. News] Stratigr, 1996, 33(1): 13-61
- [33] 西藏地质矿产局. 西藏自治区区域地质志[M].北京:地质出版社, 1993. 613-626
- [34] 江新胜, 颜仰基, 潘桂棠, 等. 藏南特提斯晚侏罗世维美组沉 积环境[J.地质通报, 2003, 22(11-12): 900-907.
- [35] 傅德荣, 刘训, 姚培毅. 西藏南部晚侏罗世一白垩纪沉积 与构造背景探讨[]. 中国地质科学院院报, 1990, (21): 21-38.

A new method to estimate original organic carbon in the marine argillaceous source rocks according to Mo_TOC correlation. An example from the Cretaceous marine mudstones and shales in southern X izang

X DNG Guo_qing JIANG Xin_sheng WU Hao

(Chengdu Institute of Geopgy and Mineral Resources Chengdu 610081, Sichuan, China)

Abstract The organic carbon and hydrocarbon potential have long been considered as two most important organic geochemical signatures in the assessment of the source rocks in sedimentary basins. The routine techniques for the recovery of organic matter abundance in the assessment of high maturity and supermature source rocks include pyrolysis simulation and thermal pressure simulation, which are not precise enough to be used alone or too expensive to be suitable for the popularization. In this paper, a new method is introduced to estimate orginal organic carbon in the marine argillaceous source rocks according to Mo TOC correlation exemplified by the Cretaceous marine mudstones and shales in southern X izang. If this method is viable, it will contribute a lot to the assessment and prediction of oil and gas resources in the high maturity and overnature source rocks in China. Key words organic carbon, source rock high maturity and overnaturity. Mo TOC correlation, southern X izang

Cretaceous marine mudstone and shale

(2)