文章编号: 1009-3850(2008) 03-0052-08

鸡西、勃利盆地白垩纪砂岩的物源分析及构造意义

温泉波1, 刘永江1, 李俊杰2, 白晶哲3,

孙晓猛! 赵英利! 韩国卿!

(1. 吉林大学 地球科学学院,吉林 长春 130026,2 中国地质调查局 沈阳地质矿产研究所,
 辽宁 沈阳 110032,3 吉林省黄金管理局,吉林 长春 130021)

摘要: 鸡西、勃利盆地白垩纪砂岩骨架矿物成分的模式分析显示:下白垩统城子河组和穆棱组砂岩的源区主要为切 割型岛弧,结合古水流方向和砂岩地球化学特征研究,物源区主要为小兴安岭 张广才岭;上白垩统猴石沟组砂岩的 源区主要为基底隆升和切割型岛弧。结合古水流方向和砾石的统计结果认为,鸡西、勃利盆地物源区主要为桦南隆 起和密山隆起,以及小兴安岭 张广才岭。据白垩纪砂岩物源,晚白垩世砾岩成分,以及区域地质资料分析,下白垩统 城子河组和穆棱组时期,鸡西盆地、勃利盆地和黑龙江东部各盆地为统一的原型盆地,早白垩世末期随着桦南隆起 和密山隆起的隆升而破坏。并在晚白垩世早期已隆升,并为周缘盆地提供物源,形成现今黑龙江东北部地区的盆岭 格局。

关 键 词:物源分析;矿物骨架组分;桦南隆起;鸡西、勃利盆地 中图分类号: TE121 1 文献标识码: A

黑龙江省东部盆地群系指牡丹江断裂带与敦 化密山断裂带之间所分布的一系列盆地,研究资 料^{11~7}表明,黑龙江东部现今分布的残余盆地在早 白垩世为统一的原型盆地,现今主要表现为由桦南 隆起和密山隆起分割为多个盆地,以及分布于桦南 隆起上的双鸭山、双桦盆地组成(图1)。由南往北 主要分布有鸡西盆地、勃利盆地、三江盆地等一系列 小型盆地,其中勃利盆地位于黑龙江省东部,佳木斯 地块中部,牡丹江断裂以东,佳木斯伊通断裂带和 敦化密山断裂带之间,盆地现今面积为9020 km²;鸡 西盆地位于黑龙江东南部,佳木斯地块南部,为一 NEE-NE向的中新生代盆地,东与敦化密山断裂带 为界,面积为3780 km²。桦南隆起和密山隆起位分 别位于佳木斯地块的中部和南部,结晶基底主要由 麻山群、黑龙江群及元古代的花岗片麻岩组成。由 于对鸡西盆地、勃利盆地白垩纪砂岩的物源分析直 接影响着对盆地古地理面貌和白垩纪盆山格局的认 识,因此,本文以鸡西盆地、勃利盆地为研究对象,通 过对盆地白垩纪砂岩的岩性特征的研究,并结合砾 岩统计结果和古水流来恢复确定沉积盆地的母岩位 置,并利用 Dickinson图解分析源区的构造背景特 征。所获认识为恢复黑龙江东部白垩纪古地理面貌 和盆山格局提供了沉积学方面的证据,同时对于研 究黑龙江东部盆地群中新生代构造演化具有十分重 要的意义,特别是对于石油勘探具有重要的指导意 义。

1 区域地质概况

鸡西盆地和勃利盆地为中新生代盆地,盆地的 下白垩统自下而上为滴道组(K,d)、城子河组

收稿日期: 2008-05-10, 改回日期: 2008-07-04

作者简介: 温泉波 (1978—), 男, 博士生, 主要从事构造地质学方面的研究。 Tel 13624316646, E-mail wenquanbo @ 163 com

资助项目:国家油气资源战略选区专项(XQ-2004-07)

图 1 黑龙江省东北部盆地分布图 1 双鸭山盆地:2 双桦盆地:3 勃利盆地:4 鸡西盆地:5 虎林盆地 F ğ 1 Distribution of the basins in northeastern Heilongjang 1= Shuangyashan Basin 2= Shuanghua Basin 3= BoliBasin 4= Jixi Basin 5=Hulin Basin

(K, h)、穆棱组(K, m)和东山组(K, d)、上白垩统 猴石沟组 (K_2h) 、海浪组 (K_2h) 和松木河组 (K_2h) (表 1)。其中, 城子河组主要分布在鸡西盆地和勃 利盆地的近盆缘一带,总体呈 NEE向条带状展布, 厚400~800^m·勃利盆地沉积厚度大于鸡西盆地,以 中细粒砂岩为主, 夹粉砂岩、泥岩、煤层、菱铁矿结核 层及凝灰岩层,局部发育海相化石层,发育煤(线), 煤层在鸡西盆地层数较勃利盆地多,底部岩石粒度 偏粗、以滨浅湖及河流相含砾砂岩、砂岩、粉砂岩、泥 岩夹煤层及凝灰岩为主,局部见砾岩;中部岩石粒度 偏细、以浅湖、滨浅湖、三角洲相砂岩、粉砂岩、泥岩、 夹煤层及凝灰岩为主;上部岩石粒度偏粗,以砂岩、 粉砂岩为主,局部发育厚层状砂岩和砾岩,相当于河 流相及浅湖相沉积。穆棱组以细砂岩、粉砂岩、泥岩 为主夹煤层及凝灰岩,火山质沉积物质自下而上有 逐渐增多的趋势,煤层分布稳定性及煤质较城子河 组差,局部煤层厚度大于10^m,系陆相、湖相粒度较 细的韵律状沉积,粉砂质、泥质岩和凝灰岩所占比重 较大。猴石沟组岩石类型主要有粗砾岩、砂砾岩、砂 岩、粉砂岩、泥岩夹流纹质凝灰岩等,底部主要为一 套冲积扇相 河流相砾岩、砂砾岩夹砂岩;中部为一 套河流 滨浅湖 半深湖相砂岩、粉砂岩、泥岩组合; 上部为一套三角洲相砂岩及粉砂岩。

2 盆地砂岩的物源分析

2.1 砂岩的岩相学特征

城子河组、穆棱组和猴石沟组砂岩薄片中的碎 屑成分主要为长石、石英和岩屑。城子河组砂岩薄 片中的碎屑成分:石英平均含量为45%,长石为 39%,岩屑为16%。单晶石英比多晶石英更常见,胶 结物和基质主要以钙质为主。碎屑物的分选性和磨 圆度较好,粒径较均一,成分成熟度较高。副矿物 主要有绿泥石、黑云母、磁铁矿、褐铁矿、绿帘石,并 有少量辉石、普通角闪石、榍石和锆石等。穆棱组砂

表 1 鸡西、勃利盆地白垩纪地层简表

Table 1 Simplified Cretaceous stratigraphic chart for the Jixi and BoliBasins

国际地质年代		年龄 /Ma	组	岩性特征					
	马特斯里赫特	65 3	松木河组	上部为中酸性熔岩夹碎屑岩、下部为中基性熔岩夹碎屑岩					
	坎潘阶	70.6							
K ₂	桑顿阶	85 8	海泊4月						
	科尼亚克阶		/母/氏纽	工女//杀红巴 /赤巴际石、砂砾石、砂石大化石 					
	土伦阶	93 5	猴石沟组						
	塞诺曼阶	- 99.6							
	阿尔必阶		东山组	为一套中性火山碎屑岩夹正常沉积岩组合,以灰色安山质角砾岩、凝 灰岩为主夹火山集块岩及安山岩和砂岩、泥岩					
қ	阿普特阶	112.0 125.0 130.0 1364 140.2 145.5	穆棱组	为一套陆相含煤岩系,以灰色/灰绿深灰色粉砂岩与泥岩互层,夹多层 凝灰岩、中细砂岩,以及炭质泥岩和煤层					
	巴列姆阶阶 欧特里沃阶		城子河组	为一套夹数个海侵油层的陆相含煤岩系,由砂砾岩、砂岩、粉砂岩、黑 色泥页岩夹凝灰岩、煤层					
	凡兰吟阶 贝里阿斯阶		滴道组	一套以陆相碎屑岩和火山岩为主的煤系地层,不整合覆盖于基底变质 或花岗岩之上					

岩薄片中,石英平均含量为47%,长石为36%,岩屑 平均含量为17%,钙质胶结普遍,岩屑主要为火成岩 岩屑,沉积岩岩屑和变质岩岩屑少见,其中火成岩中 以中性安山质的岩屑居多。分选较好,颗粒以次棱 角次圆状为主,成熟度中等,副矿物主要为稳定矿 物锆石等,不稳定矿物有黑云母等,反映了物源成分 较复杂。

猴石沟组较穆棱组、城子河组砂岩碎屑成分含 量有明显的变化,石英含量减少,平均为42%,长石 含量较少,平均为32%,岩屑含量增加,平均为26%。 胶结物和基质主要为泥质和钙质,杂基含量较高,岩 屑主要为火成岩岩屑,沉积岩岩屑和变质岩岩屑,稳 定型重矿物与不稳定型重矿物交替出现,成分成熟 度较低,分选性较差,以次圆次棱角状为主,粒度 变化较大,从细砂级变为砾级。变质岩岩屑大量出 现,表明研究区晚白垩世的大地构造背景发生了变 化。

2 2 盆地砂岩骨架矿物成分的物源分析

通过对鸡西盆地和勃利盆地中的城子河组、穆 棱组和东山组砂岩的系统采样(图1),利用 Dickinson-Gazz点计法进行镜下薄片分析和 Dickinson 砂岩模式分析^[8~10],成分包括:单晶石英(Q^m)、多 晶石英(Q^p)、总石英(Q^t=Q^m+Q^p)、长石(F)、沉 积岩岩屑(L^s)、火山岩岩屑(L^y)、变质岩岩屑(L^m)、岩屑(L=L^s+L^y+L^m)、总岩屑(L^t=L+ Q^p)、白云母(M^y)、黑云母(B)、胶结物或基质(M) 及其它(^O)。其它包括不透明矿物、锆石、榍石、绿 泥石、绿帘石、辉石和角闪石等。

在每个矿物薄片上取 300个结点,其成分包括 上述骨架矿物成分和胶结物或基质。把模式分析各 成分的结点个数换算成百分含量,其点计法统计结 果和模式分析结果分别见表 2和图 2

模式分析结果显示:对于城子河组,Q^{tF-L}图 解说明其源区主要为切割型岛弧,部分为再旋回造 山带,结合 Q^{m_F-L}图解,其物源以切割型岛弧为 主。对于穆棱组,Q^{tF-L}图解表明其物源区以切割 型岛弧为主,其次为再旋回造山带,综合 Q^{m_F-L}图 解,其物源主要为切割型岛弧,同时具有再旋回造山 带物源,而对于猴石沟组,Q^{tF-I}图解说明其源区主 要为基底隆升,部分为切割型岛弧和过渡型大陆边 缘,综合 Q^{m_F-L}图解,其物源主要为基底隆升,同 时具有切割型岛弧物源。

3 盆地砾岩的物源分析

通过分布于鸡西、勃利盆地中的猴石沟组的砾 岩进行了砾岩成分统计,野外砾岩成分统计点位置 及统计结果分别见图 和表 3,柱状图见图 3.

表 3和图 3显示,砾石成分主要为石英脉岩、花 岗片麻岩、含石墨片麻岩、云母片岩、安山玢岩、流纹 岩、凝灰岩,以及少量的煤矸石、砂岩、泥岩等。其中 花岗片麻岩、含石墨片麻岩、云母片岩、大理岩等变 质岩砾石,主要为古老的麻山群和黑龙江群等结晶

55

基底的产物;安山玢岩、流纹岩、凝灰岩等火山岩类, 推测可能主要来自盆地西部的小兴安岭 张广才岭 以及滴道组和东山组的火山岩。尤其重要的是少量 的煤矸石、砂岩、泥岩等沉积岩砾石,主要来自城子 河组和穆棱组的含煤地层。

4 讨 论

4.1 物源区地质特征

从砂岩的模式分析可以看出:城子河组砂岩物 源的骨架颗粒组合 QtF-I图为盆地早白垩世砂岩, 主要为切割型岛弧,其次为再旋回造山带,结合 Qm-F-L图的模式分析城子河组主要是切割型岛 弧。对于穆棱组,QtF-I图解表明其物源区以切割 型岛弧为主,其次为再旋回造山带,综合 Qm-F-Lt 图解,其物源主要为切割型岛弧,同时具有再旋回造 山带物源 (图 2)。城子河组和穆棱组的砂岩物源主 要为切割型岛弧物源,这种物源可能来自于两个方 向,一个是盆地西侧和西北侧的小兴安岭 张广才 岭,另一个是完达山地体。研究表明完达山地体是 中生代早期的增生杂岩^[11],由超镁铁质堆积岩、镁 铁质堆积岩、枕状熔岩、硅质岩和浊积岩等岩石构 成,具洋岛性质。早白垩纪碎屑岩地球化学特征显 示鸡西盆地早白垩世碎屑岩的源区为上地壳岩^[12], 这显然与完达山地体形成的构造背景不同。岩相古 地理恢复结果 (刘招君,2007)也显示,黑龙江东部 各盆地并没有各自的汇水中心而显示出泛盆的特 征,盆地早白垩世碎屑岩沉积时期古水流方向主要 来自于盆地西侧和西北侧的小兴安岭 张广才岭。 此外,小兴安岭 张广才岭造山带是古生代时期佳木 斯地块向松嫩地块俯冲形成的构造杂岩带,经历了

图 2 鸡西、勃利盆地砂岩骨架成分三角图解^[8~10]

上. 骨架颗粒组合 Q^{LF-L}图: 1 克拉通内部; 2 过渡大陆; 3 基底隆起; 4 再旋回造山带; 5 切割型岛弧; 6 过渡型岛弧; 7 未切割型岛弧; 1-3、大陆板块; 5-7、岩浆岛弧。下. 骨架颗粒组合 Q^{m_F-L}图: 1 克拉通内部; 2 过渡大陆; 3 基底隆起; 4 石英再旋回; 5 过渡再旋回; 6 岩屑再旋回; 7 混合区; 8 切割型岛弧; 9 过渡型岛弧; 10 未切割型岛弧; 1-3、大陆板块; 4-6、再旋回造山带; 8-10 岩浆岛弧。 △城子河 组. □ 穆棱组; ○猴石沟组

Fig 2 Triangu lar discrimination diagrams of the Cretaceous sand stones from the Jixi and Boli Basins (after Dickinson et al., 1979 Dickinson et al., 1983, Dickinson, 1985)

Upper QtF-L diagrams 1= intractation ic 2= transitional continent 3= basement up lift 4= recycled order, 5= dissected is land arc 6= transitional is land arc 7= und is sected is land arc 1-3= continental plate 5-7= magnatic is land arc Lower Qm.F-Lt diagrams 1= intractationic 2= transitional continent 3= basement up lift 4= quartz recycle 5= transitional recycle 6= liftic recycle 7=m ked field 8= dissected is land arc 9= transitional is land arc 10= undissected is land arc 1-3= continental plate 4-6= recycled order 8-10= magnatic is land arc \triangle Chengzihe Formation \square Mu leng Formation \bigcirc H cush Bou Formation

表 2 鸡西、勃利盆地砂岩成分百分含量

Table 2 Percentage compositional contents of the sand stones from the Jixi and Boli Basins

薄片编号	时代	Qm	Qp	F	Ls	Lv	Lm	Mu	Bt	М	0	Tota]	Qt	L	Lt
03ML		40	6	30	2	7	3	1	2	8	1	100	46	12	20
04ML		37	5	34	4	6	3	0	3	7	1	100	42	13	18
25 JX-1		31	3	35	4	13	1	1	2	9	1	100	34	18	21
25 JX-2		34	7	37	2	14	0	0	0	5	0	100	41	16	23
25 JX-3		32	5	38	4	11	2	0	1	6	1	100	37	17	22
28WZ	КЬ	28	9	41	2	4	3	2	3	7	1	100	37	9	18
29W Z-15	12 11	37	6	39	3	5	3	0	1	6	0	100	43	11	17
42DB		39	6	36	6	10	0	0	1	5	1	100	45	16	22
45 HN		35	5	30	2	12	4	1	3	7	1	100	40	18	23
75QT		36	7	31	3	4	3	0	1	9	0	100	43	10	17
77QT		47	8	30	4	2	2	1	0	6	0	100	55	8	16
79MS		38	9	33	2	5	2	0	3	7	1	100	47	9	18
06LS		38	3	37	4	11	0	1	1	4	1	100	41	15	18
07 LS-2		32	3	35	0	15	0	3	2	8	2	100	35	15	18
07 LS-3		41	1	33	2	11	0	2	1	6	3	100	42	13	14
07 LS-4		35	2	43	3	11	0	1	0	4	1	100	37	14	16
07 LS-5		38	4	39	1	10	0	1	1	5	1	100	42	11	15
07 LS-6		38	3	30	0	16	0	2	1	8	2	100	41	16	19
07 LS-7		41	3	36	0	10	0	2	0	7	1	100	44	10	13
07 LS-8		36	4	38	4	8	0	1	0	9	0	100	40	12	16
17 JC	K m	40	4	33	4	7	0	4	0	7	1	100	44	11	15
18 JC		35	1	40	3	12	0	2	1	6	0	100	36	15	16
21HS		39	2	38	2	13	0	0	1	4	1	100	41	15	17
22 JC		45	1	31	2	14	0	1	1	4	1	100	46	16	17
73QT		41	1	37	3	11	0	2	1	3	2	100	42	14	15
76QT		46	1	33	4	9	0	2	0	5	0	100	47	13	14
91QT		40	1	35	5	8	0	0	1	10	0	100	41	13	14
92QT		39	1	45	2	12	0	0	1	10	0	100	40	14	15
95QT		40	2	35	3	13	0	1	1	5	0	100	42	16	18
08HS		40	2	37	2	10	0	1	0	6	2	100	42	12	14
23 JC	Kch	36	3	40	3	12	0	1	0	5	0	100	39	15	18
24HS	· 1 · 1	44	2	38	2	11	0	1	0	2	0	100	46	13	15
90DD		42	2	32	6	8	0	2	1	6	1	100	44	14	16

由被动陆缘到活动陆缘的转变,并最终沿小兴安岭 至张广才岭西坡发育长达800^{km}的具陆缘岛弧性质 的早古生代花岗岩^[13],元古代晚期张广才岭运动开 始,并伴有同构造期的中酸性花岗岩侵入,早古生代 以来本区一直处于隆起^[14]。由此可以认为盆地在 早白垩世沉积时期物源主要来自于盆地西侧的小兴 安岭张广才岭造山带,而盆地东侧的完达山地体此 时并未为盆地提供物源。

猴石沟组砂岩物源分析显示,Q^tF-I图解说明 其源区主要为基底隆升,部分为切割型岛弧和过渡 型大陆边缘,结合Q^{m_F-L}图解,其物源主要为基 底隆升,同时具有切割型岛弧物源。砾岩统计结果 盆地猴石沟组沉积时期的物源主要来自于桦南隆 起。综上所述猴石沟沉积时期盆地砂岩源区主要为 桦南隆起和密山隆起,其次为小兴安岭张广才岭物 显示的花岗片麻岩、含石墨片麻岩、云母片岩、大理 岩等变质岩砾石的大量出现,说明猴石沟组沉积时 期,由麻山群和黑龙江群构成的结晶基底已经隆起 并为周缘盆地提供物源;火山岩类砾石的大量出现 也说明小兴安岭张广才岭仍继续为盆地提供物源。 野外工作中发现,在位于倭肯镇东南的猴石沟组中 可见清晰的波痕 (图 4^A),其面理产状为260°~25°, 近水平,水流方向大致为215°,该点位于桦南隆起的 西南,其水流指向表明物源来自桦南隆起。此外,对 位于桦南隆起西南的勃利盆地内倭肯河和小五站猴 石沟组砾岩中的砾石的最大扁平面进行了野外统 计,做古水流向玫瑰花图 (图 4^B),也可以看出勃利 源区,而盆地东部的完达山地体是否也提供物源有 待于进一步的研究。

图 3 猴石沟组砾石统计柱状图 Fig 3 Histograms of the gravel compositions in the Houshigou Formation

图 4 勃利盆地古水流方向判别图^[15] A 猴石沟组波痕: B猴石沟组古水流向玫瑰花图 Fig 4 Discrimination diagrams of palaeocurrent directions in the Boli Basin (after Han Guoqing et al, 2008) A Wave marks in the Housh gou Formation, B Roses of palaeocurrent directions in the Housh gou Formation

4.2 物源区隆升特征

城子河组与穆棱组在砂岩成分和成熟度上相 似,二者沉积时期和沉积体系基本一致。后者继承 了前者的物源供给,但水体范围扩大,物源相对沉积 盆地后退,盆地的主体依然是滨浅湖沉积。古生物 证据显示^[24~7],在鸡西盆地、勃利盆地以及双鸭山 盆地和双桦盆地中都发现了双壳类海相动物化石, 城子河组和穆棱组中的海相夹层在黑龙江东北部各 个盆地间可以进行对比。吴福元等(2003)认为,我 表 3 鸡西、勃利盆地猴石沟组砾岩成分百分含量 Table 3 Percentage com positional contents of the Housh gou Form ation conglomerates from the Jixi and Boli Basins

砾岩成分组成	15LM	29WZ-1	20HS	41 DB
石英脉	42	22	18	6
花岗斑岩	10	20	12	3
花岗岩	11	4	4	25
大理岩	2	1	4	1
浅粒岩	2	0	0	0
花岗质片麻岩	3	0	0	3
含石墨片麻岩	3	0	0	3
云母片岩	0	1	0	4
其它变质岩	0	0	1	3
流纹岩	19	18	31	20
安山玢岩	10	12	8	18
凝灰岩	18	37	12	14
黑耀岩	0	0	1	0
泥岩	0	0	0	0
煤矸石	0	0	4	0
砂岩	0	4	0	0

国东部岩石圈的拆沉作用始于 160^M左右, 在 130 ~ 120^M达到高潮^[16], 因此, 城子河组和穆棱组沉积 时期, 黑龙江东北部地区基本进入下沉拗陷阶段, 盆 地受伸展裂陷成盆作用控制, 整体构成一个统一的 陆缘拗陷盆地, 此时, 盆地西侧小兴安岭 张广才岭 为该统一的陆缘拗陷盆地提供物源。

与城子河组和穆棱组的砂岩相比, 猴石沟组砂 岩成分和成熟度有较大变化,岩屑含量增多,石英含 量较少,而变质岩岩屑的大量出现,说明砂岩碎屑源 区地势起伏大,基底抬升快,形成了与下伏东山组成 角度不整合接触的一套粗碎屑砂岩,结合砾岩统计 结果所显示的花岗片麻岩、含石墨片麻岩、云母片 岩、大理岩等砾石的大量出现,进一步说明桦南降起 和密山隆起快速隆升,上覆地层被剥蚀殆尽,部分地 区剥蚀到了基底,构造背景发生了重大的变化,尤其 煤矸石的出现表明桦南降起和密山降起快速降升. 近距离搬运沉积,在其周围沉积了厚层砾岩和砂砾 岩,沉积相以河流冲积扇为主,地貌反差大、快速充 填的陆相沉积环境。结合日本学者对西太平洋板块 运动的研究成果, 桦南降起和密山降起的降升机制 与西太平洋 依泽奈崎板块在 100~85^M时以高角度 (NW), 高速率 (23.5 ^{cm/a})向欧亚板块俯冲^[17]有 关,区域应力场发生明显的改变,在南北向的持续挤 压作用下,勃利盆地、双鸭山、双桦等盆地南界形成 一系列近东西向的逆冲断层[15],显示盆地南部边界 均被后期走向近 EW, NE-SW逆冲断层破坏, 古老基 底逆冲到早白垩世地层之上,北部边界为中生代煤 系地层超覆在古老基底之上,形成 南断北超 的盆 地格局 (陈广雅等, 1991),这种全区性的构造反转 事件,持续到古新世,经历从 112 2^M到 55^M,持续 时间为 57. 2^M^{a¹}。

上述资料显示黑龙江东北部早白垩世(城子河 组、穆棱组)为统一的陆缘拗陷盆地,早白垩世末 期,桦南隆起和密山隆起开始隆升,晚白垩世形成盆 岭构造格局的雏形,此时统一的陆缘拗陷盆地被桦 南隆起和密山隆起所破坏,为鸡西盆地和勃地利盆 地提供物源。

5 结 论

(1)砂岩模式分析表明,鸡西、勃利盆地下白垩 统城子河组和穆棱组砂岩的源区主要为切割型岛 弧,其次为再旋回造山带,结合古水流方向以及碎屑 岩地球化学特征,盆地物源区主要为小兴安岭张广 才岭;上白垩统猴石沟组砂岩的源区主要为基底隆 升,部分为切割型岛弧和过渡型大陆边缘,结合古水 流方向及砾石的统计盆地物源区主要为桦南隆起和 密山隆起,其次为小兴安岭张广才岭。由于强烈的 构造变动及潜在的长距离搬运作用,切割型岛弧物 源和基底隆升及结构是非常复杂的,可能也会受到 气候变化和成岩作用的影响,而且研究区受佳伊断 裂和敦 密断裂的影响,物源更加复杂。比较精确地 确定物源,需要对盆地碎屑沉积物的地球化学、同位 素年代学等方面做进一步的研究。

(2)早白垩世(城子河组和穆棱组)鸡西、勃利 盆地,以及黑龙江东部各盆地为统一的陆缘拗陷盆 地,早白垩世末期随着桦南隆起和密山隆起的隆升 而破坏,桦南隆起和密山隆起隆升时间应该为早白 垩世末,并在晚白垩世早期已隆升一定高度为周缘 盆地提供物源,形成现今黑龙江东北部地区的盆岭 格局。

参考文献:

- [1] 曹成润,郑庆道.黑龙江东部残留盆地群构造演化特征及其油
 气勘探意义[J].吉林大学学报(地球科学版),2003,33(2): 167-172
- [2] 沙金庚. 黑龙江东部早白垩世生物地层学研究的主要进展
 [1]. 地学前缘, 2002, 9(39): 95-101
- [3] 王伟涛,刘招君,何玉平,等.黑龙江省绥滨坳陷下白垩统碎屑 岩源区分析及其构造意义[J.沉积学报,2007,25(2):201-206.
- [4] 何承全,孙学坤.黑龙江省东部鸡西盆地城子河组下部早白垩 世欧特里夫晚期海相沟鞭藻[].古生物学报,2000,39(1):46

-62

- [5] 万传彪,闫凤兰,尹楠. 黑龙江集贤地区早白垩世沟鞭藻类和 其他藻类[]. 微体古生物学报, 1995, 12(1); 51-62.
- [6] 姜宝玉,冯金宝.鸡西群城子河组时代的进一步探讨[J].地
 层学杂志,2000,25(3):217-225
- [7] 潘华璋,朱祥根.黑龙江省东部早白垩世的一些海相和半咸水 相腹足类[].古生物学报,2004 43(3): 338-348.
- [8] DICKINSONW R SUCZEK C A Plate tectonics and sandstone compositions[]. AAPG Bull, 1979, 63(12): 2164-2182.
- [9] DICKINSON W R BEARD L S BRAKENRIDGE G R et al Provenance of North American Phanerozoic sandstones in relation to tectoric setting [J]. Geol Soc Amer Bull, 1983 94 222 -235
- [10] DUKINSON W R Interpreting provenance relations from detrial modes of sandstones [A]. Zuffa G G Provenance of Arenites [G]. Dordrecht D Reidel Publishing Company 1985. 331-361

- [11] 赵春荆, 彭玉鲸, 党增欣, 等. 吉黑东部构造格架及地壳演化
 [^{M]}. 沈阳 辽宁大学出版社, 1996. 34-35
- [12] 王杰,和钟铧,刘招君,等.鸡西盆地白垩纪碎屑岩地球化学
 特征及其对物源的制约[].世界地质,2006,25(4):341-348.
- [13] 李锦轶, 牛宝贵, 宋彪, 等. 长白山北段地壳的形成与演化
 [^{M]}.北京: 地质出版社, 1999. 110-114
- [14] 黑龙江省地质矿产局.黑龙江省区域地质志[^{M]}.北京:地质 出版社,1993 330-435.
- [15] 韩国卿,刘永江,李俊杰,等.黑龙江省东部桦南隆起的隆升 时期[J.吉林大学学报(地球科学版),2008,38(3):389-397.
- [16] 吴福元, 葛文春, 孙德有,等. 中国东部岩石 圈减薄研究中的
 几个问题[]. 地学前缘, 2003, 10(3): 51-60
- [17] MARUYAMA Ş SENO T Orogeny and relative plate motions.
 Example of the Japanese Islands [J]. Tectonophysics, 1986
 127(3-4): 305-329

Provenance analysis and tectonic inplications for the Cretaceous sandstones in the Jixi and Boli Basins Heilongjiang

WEN Quan bo, LU Yong jiang, LI Jun jiê, BAI Jing zhê, SUN X jao meng, ZHAO Y ing lị, HAN Guo q ing

(1. College of Earth Sciences Jilin University Changchun 130026 Jilin China, 2. Shenyang Institute of Geology and Mineral Resources Shenyang 110032 Liaoning China, 3. Jilin Gold Administration Changchun 130021 Jilin China)

Abstract The modal analysis of the Cretaceous sandstones from the Jixi and Boli Basin's Heilongjiang suggests that the provenance of the Lower Cretaceous Chengzihe Formation and Muleng Formation sandstones is a dissected island are. The palaeocurrents and geochem ical signatures of the sandstones have revealed that the major source areas are the Xiao Hingganling and Zhangguangcailing Mountains while the source areas of the Upper Cretaceous Houshigou Formation sandstones are the basement uplift and dissected island are. According to the palaeocurrents and gravel compositional statistics the source areas of the Jixi and Boli Basins consist of Huanan uplift Mishan uplift X iao Hingganling and Zhangguangcailing Mountains. It is inferred from the provenance analysis of the Cretaceous (deposition of the Chengzihe and Muleng Formations). This proptyte basin was subsequently subjected to the collapse with the uplifting of the Huanan and Mishan uplifts during the farst Cretaceous Till the Late Cretaceous (deposition of the Houshigou Formation), the Huanan and Mishan uplifts were constantly uplifted and delivered the sediments for the surrounding basins. The present day basin range framework came into being in northeastern Heilong jiang at that the sediments for the surrounding basins.

Keywords provenance ana Vsis framework mineral Huanan uplift Jixi Basin Boli Basin