文章编号:1009-3850(2007)03-0020-07

西藏改则县铁格隆地区含矿玢岩特征与成因探讨

勾永东, 陈玉禄, 刘汉强

(四川省地质调查院 区域地质调查所,四川 成都 610213)

摘要:铁格隆地区含矿岩石以闪长玢石及石英闪长玢岩为主,属钙碱性岩系和高钾钙碱性岩系,显示 I型花岗岩的特点。岩体形成于早白垩世班公湖-怒江洋盆俯冲消减构造环境,成岩岩浆属氧化型岩浆,来源于壳幔结合部,并受到 壳源物质的强烈混染。与玉龙、冈底斯斑岩矿带含矿岩石进行对比,该含矿玢岩在岩石类型、岩石化学、地球化学及 成岩构造环境等方面均存在明显差异,指示其成矿动力学背景、成矿机理与"碰撞"及"碰撞后"的斑岩型矿床不同, 属形成干"岛弧"环境的斑岩型铜金矿床。

关键 词: 改则; 玢岩; 斑岩型铜金矿; 西藏

中图分类号: P588.13⁺4 文献标识码: A

西藏改则县色当乡境内的铁格隆(亦称铁格山) 地区,近年来陆续发现铜金矿(化)点10余处,已构成 一条近东西走向延伸长约60km、宽20~30km的规模 显著的铜金矿成矿带,称多不杂-铁格隆成矿带。在 该成矿带内已有诸如恰秋沟中型砂金矿、色那小型 砂金矿、赛角、萨玛弄、拿若等砂金矿点的开发,此外 尚有尕尔勤金矿点、色那金铜矿点和多不杂铜矿 (化)点等多处原生矿点(床)正在勘查中,显示出该 区良好的找矿前景。但是,这一地区岩金矿的找矿 及勘探工作是近年来才开始的,其成矿理论的研究 仍十分薄弱^{1,3},铜金矿的成矿物质来源、成矿机理 的研究也尚待深入。

近年来,笔者在1^{:25}万区域地质调查工作中, 对区内众多铜金矿(化)点进行了野外调查并收集了 系列资料,认为铜金矿(化)体与该地区的玢(斑)岩 类岩体关系十分密切。

1 区域地质概况

铁格隆地区位于班公湖-怒江结合带西段北侧、

羌塘-三江复合板片南部边缘之色哇陆缘坳陷区,属 阿尔卑斯-喜马拉雅成矿带的组成部分(图1)。该 区的地层区划属羌南地层区之多玛分区。区内主体 建造为侏罗系曲色组、色哇组浅海-斜坡(火山)碎屑 岩沉积建造,另有石炭系展金组、曲地组陆源碎屑 岩、二叠系龙格组碳酸盐岩、三叠系亭共错组³¹陆相 盆地沉积的砂砾岩和白垩系美日切错组陆相中基性 火山岩等地层不同程度出露,边缘地区分布有阿布 山组陆相盆地磨拉石和康托组河湖相地层,第四系 洪冲积物广泛分布于山体周围的沟谷、盆地内。下 白垩统及其以下的各套岩石地层(体)均遭受了区域 低温动力变质作用,岩石变质程度低级一极低级。

区内岩浆岩较为发育,以侵入岩为主,火山岩较 少,主要表现为含于曲色组碎屑岩中的中基性火山 岩、美日切错组紫红色中基性火山岩和众多小规模 的中酸性侵入岩岩体,均属晚侏罗一早白垩世班公 湖-怒江洋盆俯冲消减时期的产物。该区断裂构造 较为发育,以东西走向逆断层为主。断裂带宽度一 般100~200m,带内普遍具强烈挤压片理化,并多见

资助项目:中国地质调查局 1:25 万区域地质调查(200303000016)。

收稿日期: 2006-02-15; 修改日期: 2007-04-09

第一作者简介: 勾永东, 1972年生, 工程师, 从事区域地质调查, 矿产勘查与研究工作。

图 1 铁格隆地区地质简图

Q. 第四系; N₁*k*. 康托组; K₂*a*. 阿布山组 K₁*m*. 美日切错组; J₃K₁*s*. 沙木罗组; JM. 木嘎岗日岩群; J₂*s*. 色哇组, J₁*q*. 曲色组; T₃*t*. 亭共错组; T₃*R*. 日干配错群; P₁*lg*. 龙格组; C₂*z*. 展金组, C₂*q*. 曲地组; ^Σ. 超基性岩; β. 玄武岩; K₁ ^λ, 早白垩世闪长玢岩; K₁^{@µ}. 早白垩世石英闪长玢岩; K₁^γ[∂], 早白垩世花岗闪长斑岩。1. 调查区位置; 2. 超基性岩; 3. 玄武岩; 4. 花岗岩; 5. 含矿斑岩; 6. 地层界线 7. 角度不整合界线; 8. 深大断裂; 9. 逆断层; 10. 走滑断层; 11. 铜金矿(化点); 12. 砂金矿点。A₁. 喜马拉雅板块; B₁. 冈底斯-念青唐古拉板块; B₂. 羌塘-三江复合板块; B₃. 南 昆仑-巴颜喀拉板块; Js. 金沙江缝合带; Ys. 雅鲁藏布江缝合带; Bs. 斑公湖·怒江缝合带

Fig. 1 Simplified geological map of the Tiegelong region, Gerze, Xizang

Q=Quatemary; N₁k= Kangtog Formation; K₁a=Abushan Formation; K₁m= Meiriqieco Formation; J₃K₁s= Shamuluo Formation; JM= Muggar Kangri Group Complex; J₂s= Sewa Formation; J₁q= Quse Formation; T₃t= Tinggongco Formation; T₃R= Rigain Punco Group; P₁lg= Longge Formation; C₂z= Zhanjin Formation; C₂q= Qudi Formation. Σ = ultra-basic rock; β = basalt; K₁ $\partial \mu$ = Early Cretaceous dioitie-porphyrite; K₁ $\partial \mu$ = Early Cretaceous quartz dioitie-porphyrite; K₁ $\gamma \alpha$ = Early Cretaceous granodioitic porphyry. 1= survey area; 2= ultra-basic rock; 3= basalt; 4= granite; 5= ore-bearing porphyry; 6= stratigraphic boundary; 7= angular unconformity; 8= profound fault; 9= thrust fault; 10= strike-slip fault; 11= copper-gold deposit (mineralized locality); 12= gold placer locality. A₁= Himalaya plate; B₁= Gangdise-Nyainqentanglha plate; B₂= Qiangtang-Nujiang-Lancangjiang-Jinshajiang plate; B₃= South Kunlur Bayan Har plate. Js= Jinshajiang suture zone; Ys= Yarlung Zangbo suture zone; Bs= Bangong Lake-Nujiang suture zone

有羽状石英细脉呈密集型分布,局部有糜棱岩。

2 含矿岩体地质特征

铁格隆地区分布有众多的玢(斑) 岩类岩体, 计 有大小岩体数十个, 总体呈近东西向展布, 在多不杂 一铁格隆一带较为集中, 并与区内主要构造线协调。 岩石类型有闪长玢岩、石英闪长玢岩及花岗闪长斑 岩等。岩体均为岩浆一次脉动上侵形成的简单岩 体, 一般规模较小, 呈小型岩株或岩瘤状产出, 分布 面积0.5~10km², 属高位(超浅成侵入) 岩体。岩体 多侵位于侏罗系曲色组、色哇组复理石一类复理石 地层中, 少数侵位于展金组陆缘碎屑岩地层, 与围岩 侵入接触关系明显, 围岩多具角岩化等热接触变质 和热液交代变质现象。岩体侵入的最新地层为中侏 罗统色哇组, 局部岩体被新近系康托组河湖相地层 不整合覆盖, 或被后期北东向走滑断裂切失。

李胜荣等测定铁格山金矿似斑状花岗闪长岩的 年龄为123.3±1.8Ma^[2],曲晓明等测定该地区含矿 岩体的锆石 SHRMP 年龄为127.8Ma^[4],测年成果与 岩体和围岩的地质关系一致,表明该区岩体的侵位 时间为早白垩世。

铁格隆地区铜金矿(化)与玢(斑)岩体关系极为 密切,属斑岩型铜金矿床。矿(化)体主要分布于玢 (斑)岩体与围岩接触带部位的裂隙和构造破碎带 中,呈脉状产出,并以硫化物矿脉为主,多与石英脉、 方解石脉伴生,并具有靠近岩体矿脉增多的趋势。 赋矿围岩多为弱角岩化的曲色组和色哇组浅海斜 坡相的(火山)碎屑岩,局部为黄铁绢英岩化石英闪 长玢岩(K₁ ¾⁴)和花岗闪长斑岩(K₁ γ ¾)。矿石类型 为矿化碎屑岩型和矿化玢(斑)岩型,矿石构造以细 脉浸染状为主,原生金属矿物以黄铁矿、黄铜矿、辉 铜矿及自然金等,表生金属矿物主要有褐铁矿、孔雀 石、蓝铜矿,脉石矿物主要为石英、方解石、绢云母和 绿泥石。自然金呈不规则微细粒状、微细鳞片状赋 存于硫化物、石英和碳酸盐矿物内部、裂隙或颗粒边 缘。

据西藏地矿局第五地质大队的勘探工程揭露, 地表浅部金矿体最大长度达320m,最大厚度3.75m, 最大推深110m;铜矿体最大长度大于240m,最大厚 度26m,最大推深120m,并具有矿体向深部增厚增大 的趋势。地表矿体Au平均品位为3.25×10⁻⁶,平硐 内平均品位达4.11×10⁻⁶;铜品位多在1%~1.5% 之间。铜、金矿品位与硫化物含量呈正相关。据钻 探、浅井、探槽及地质物探测量等揭示成果反映,该 地区尚有较多隐伏岩体,岩体隐伏深度为0~58m, 岩体及外侧多具不同程度的铜金矿化,表明该地区 仍具有极大的找矿潜力。

3 含矿玢岩特征

3.1 岩石学特征

铁格隆地区含矿岩体以闪长玢岩和石英闪长玢 岩为主,极少见花岗闪长斑岩。

闪长玢岩具斑状结构,基质微晶一细粒结构,少 量为隐晶结构,块状构造。斑晶矿物为斜长石、正长 石和角闪石,或有辉石、黑云母等;斑晶矿物粒度为 0.2~2.8mm,含量30%~40%,斜长石中可见钠氏 双晶。基质由斜长石、普通角闪石等组成,矿物粒度 为0.02~0.05mm。副矿物为磷灰石、磁铁矿物及少 量榍石,其中磁铁矿含量0.5%~2%,少数达4%。 岩石蚀变较明显,斜长石斑晶多具钠化,表面分布绢 云母鳞片,辉石粘土化,周围常有褐铁矿分布,黑云 母边缘多析出褐铁矿,部份蚀变为绿泥石。

石英闪长玢岩具斑状结构,基质具微晶结构,块 状构造。斑晶矿物为斜长石、正长石及暗色矿物黑 云母、普通辉石等,或含少量石英,矿物粒度为0.2~ 2.0mm,含量22%~30%;基质由微晶斜长石及少量 正长石等组成,粒度小于0.02mm。副矿物为磷灰 石、少量榍石及金属矿物。斜长石表面分布绢云母, 正长石表面粘土化,黑云母多蚀变为绿泥石。

上述含矿玢岩岩石中含有较多磷灰石和磁铁 矿, 尤以磁铁矿含量较高, 一般达0.5%~2%, 最高 可达4%~5%。根据石原舜三的研究结论^[3], 反映 该地区玢岩成岩岩浆属氧化型岩浆(还原型花岗岩 浆形成的岩石中含有较多钛铁矿而不含磁铁矿或含 量很低)。同时研究表明, 花岗质岩浆的氧化状态与 热液矿床之间有一定的成因联系, 氧化状态较高的 氧化型岩浆与斑岩铜矿有关, 而氧化状态较低的还 原型岩浆与钨、锡矿床有关。Sillion 根据对世界范 围内大型热液铜-金矿床的研究成果, 指出氧化型岩 浆是大型斑岩铜-金矿床形成的必要条件^[4]; 另一些 研究者亦指出岛弧环境中的铜矿床往往富含金和铂 族元素, 也与岩浆具有较高的氧化状态有关^[7]。由 此分析, 该区玢(斑) 岩岩浆较高的氧化状态, 是形成 铜金矿床的有利条件之一。

3.2 岩石化学特征

于铁格隆地区含矿岩体内共采集样品 6 件, 样 品岩石类型为闪长玢岩及石英闪长玢岩(表 1)。

分析结果表明,含矿玢岩中 SiO₂ 的含量变化范 围较小,集中在 57.98%~64.64%间,平均值为 61.99%;Al₂O₃含量较高,为15.02%~16.97%,平均 达15.95%;K₂O+Na₂O 为5.11%~7.65%,其中 K₂O

表1 铁格隆地区含矿玢岩岩石化学成分(wg/%)分析结果表

Table 1	Chemical compos	itions (w_{B} / $\%$)) in	ore-bearing	porphyrite	from 1	the	Tiegel ong	region
---------	-----------------	---------------------------	------	-------------	------------	--------	-----	------------	--------

样品号	岩石名称	SiO_2	Al_2O_3	Fe ₂ O ₃	FeO	CaO	MgO	K ₂ O	Na ₂ O	${ m TiO}_2$	P_2O_5	MnO	H_2O	烧失量	$\Sigma \mathbf{GS}$	σ	DI	A/ NCK
D1010GS1	闪长玢岩	57.98	16.02	2.03	2.51	6.33	2.91	2.55	3. 08	0.90	0.13	0.17	0.78	4.70	100.09	2.21	57.1	0.83
D3149GS1	辉石闪长玢岩	60.46	16.28	3.82	2.17	2.40	2.19	3.77	3. 88	0.85	0.33	0.16	0.72	2.98	100.01	3.32	72.4	1.10
LP15GS1	闪长玢岩	61.66	15.02	1. 54	4.15	3.16	3.53	2.25	2.86	0.84	0.24	0.14	0.18	4.28	99.85	1.43	62.7	1.17
NP38GS1	石英闪长玢岩	63.36	16.97	4.27	0.28	2.66	0.64	3.13	2.66	0.80	0.14	0.12	0.50	4.29	99.82	1.60	73.4	1.35
D2185GS1	石英闪长玢岩	63.84	16.05	2.79	2.57	3.49	2.66	2.02	3.90	0.45	0.14	0.07	0.10	2.13	100. 21	1.68	67.0	1.07
D3102GS1	石英闪长玢岩	64.64	15.36	4.07	1.94	2.62	1.49	1.95	5.11	0.46	0.23	0.12	0.22	1. 92	100. 13	2.29	75.0	1.01

为1.95%~3.77%,比 Na2O 含量略低。岩石里特曼 组合指数(の)为1.43~3.32,碱度率(AR)为1.67~ 2.39。铝饱和指数(A/NKC 分子比)普遍较高,多集 中在1.01~1.35之间,并有约一半样品大于1.10,6 件平均值达1.09,属高铝质和过铝质花岗岩。岩石 分异指数(DI)介于57.1~75.0,大幅高出"闪长岩分 异指数的平均值48"(桑汤和塔塔尔,1960),不仅表明其 分异程度高于一般的石英闪长岩,甚至高出花岗闪 长岩岩浆的分异程度。CIPW标准矿物计算岩石多 含有刚玉,含量0.7~5.0,平均2.46;钾钠钙三类长 石中,钠长石含量相对较高,钙长石较低。数据分析 显示,该区含矿玢岩属亚碱性岩石,SiO2-K2O 图表明 岩石为钙碱性-高钾钙碱性岩系(图2)。

将铁格隆区含矿玢岩与玉龙铜矿带及冈底斯铜 矿带含矿斑岩的全岩化学分析⁸¹相比较发现,该区 岩石中SiO₂与K₂O的含量相对较低,其SiO₂平均低 约6.2%,K₂O平均低约1.08%,而CaO与MgO分别 偏高1.29%及1.10%,岩石明显偏基性;冈底斯铜矿 带含矿斑岩以花岗闪长斑岩为主,岩石属高钾钙碱 性岩系一钾玄岩系,而该区则是以钙碱性-高钾钙碱 性岩系的闪长玢岩与石英闪长玢岩为主。同时研究 还表明,该区岩石中普遍具有较高的Al₂O₃含量,比 于冈底斯带含矿斑岩平均高出0.61%,岩石铝饱和 指数也相对较高。

3.3 岩石地球化学特征

铁格隆地区含矿玢岩的稀土及微量元素分析结 果列于表 2中。稀土元素以球粒陨石标准化的分配 曲线型式见图 3。稀土元素分析表明,闪长玢岩中 稀土元素总量为(128.15~190.48)×10⁻⁶,其中 LREE 为(115.67~170.05)×10⁻⁶,HREE 为 (12.48~20.48)×10⁻⁶,LREE/HREE 为 6.91~ 13.69;稀土分配曲线呈平滑的右倾型式,轻稀土分 馏较明显而重稀土分馏程度较弱。 &u 值多在 0.84~1.0之间,平均为0.92,显示 Eu 具弱亏损一极 弱亏损。含矿岩石中,Ce 多具弱一较强富集的特 征, &e 为0.89~1.52且多大于1.0,平均值达1.22。

以 N-MO RB(Wood, 1979) 标准化的岩石微量元 素分配曲线(图4)显示, 各样品表现出基本一致的 特征。微量元素含量变化具有明显的规律性, 即流 体活动性强的大离子不相容元素 Rb、Ba、Th、K 及 LREE 高度富集, 在曲线上形成高峰, 而流体活动性 弱的高场强元素 Nb、Ta、Ti 及 HREE 等则明显亏损, 曲线上形成低谷。上述元素含量及其变化显示了该 区岩石具有世界含矿斑岩的共有特征⁹。

■闪长玢岩;▲石英闪长玢岩(下同)

(图中岩系分界线据 Peccerillo et al., 1976;玉龙 Cu 矿带资料据 唐仁鲤等,1995;冈底斯 Cu 矿带资料据曲晓明等^[8],2001)

Fig. 2 SiO_2 vs. K_2O diagram of the ore-bearing popyhyrite from the Tiegelong region

■ = dionite-porphyrite; ▲ = quartz diorite-porphyrite (Rock series boundary data from Peccerillo et al., 1976; Yulong copper belt data from Tang Renli et al., 1995, and Gangdise copper belt data from Qu Xiaoming et al., 2001)

从岩石地球化学对比来看,该区含矿玢岩与冈 底斯 Cu 矿带含矿斑岩区别较为明显,主要表现在 重稀土分馏较弱,其 LREE/HREE 仅为6.91~13.69, 平均值10.32,而冈底斯带含矿斑岩平均值为22.79 (据文献^[8]统计),无疑显示了成岩岩浆来源的差异 性。微量元素分配型式虽与与冈底斯矿带大体一 致,但仍显示出元素 Y 和 Yb 含量明显偏高。

4 岩石成因与构造环境

岩石化学成分分析表明,铁格隆地区含矿玢岩 属钙碱性-高钾钙碱性岩系;其稀土配分曲线呈平缓 右倾型,轻稀土分馏明显而重稀土分馏较弱, Eu 弱 亏损甚至无亏损, &u 值普遍达0.80以上, Sr 元素含 量大于200,显示出幔源岩石的部分特性。同时,岩 石中具有较高的铝质含量,又显示出壳源岩石的特 点,二者从常量元素与微量元素两个角度,显示出岩 石不同的源区特性,但其"幔源"成分相对较多,表明 含矿玢岩岩浆可能来源于壳幔结合部的上地幔,或 与幔源岩浆受到地壳物质的强烈混染有关,其岩石 成因符合"I型"花岗岩的特征。

表2 铁格隆地区含矿玢岩稀土、微量元素($w_{B'}$ %)分析结果

lable		laiyuca	1 I CSul		TE ES a	inu u	aceu	ements	9 (W B	· / 0 / 1	iii uic	ore b	canng	, hoth	ily file	11 UIII	uie i	legelon	g iegi	
样品号	岩石	名称	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y	$\Sigma_{\rm REE}$	L/H	ðEu
D1010GS1	闪长	动岩	38.0	80.0	12.00	30.0	8.00	2.00	6.60	1.00	5.50	1.10	3.00	0.28	2.50	0.50	25.0	190.48	8.30	0.84
D3149GS1	辉石闪]长玢岩	30.1	51.1	6.39	22.1	4.74	1.24	3.60	0.61	3.66	0.56	1.97	0.31	1.57	0.20	15.1	128.15	9.27	0.92
LP15GS1	闪长	、玢岩	35.0	80.0	9.20	37.0	7.40	1.45	4.80	0.85	4.00	0.64	2.30	0.35	1.70	0.38	19.0	185.07	11.32	0.74
NP38GS1	石英闪]长玢岩	46.0	160.0	14.00	51.0	9.00	2.60	6.80	1.00	5.80	1.39	3.40	0.30	1.50	0.45	23.0	303.24	13.69	1. 02
D2185GS1	石英闪]长玢岩	9.2	34.0	3.80	11.0	2.30	0.68	1.90	0.35	2.00	0.50	1.90	0.38	1.45	0.35	12.0	69.81	6.91	0. 99
D3102GS1	石英闪]长玢岩	20.0	58.0	6.80	20.0	3.10	0.86	2.30	0.40	1.70	0.50	1.60	0.32	1.52	0.40	5.6	117.50	12.44	0. 98
样品号	Rb	Cs	\mathbf{Sr}	Ва	U	Th	Та	Nb	Zr	Hf	Li	Sc	V	Cr	Co	Ni	Cu	Zn	В	Sn
D1010GS1	60.0	6.1	650	820	2.3	9.4	1.15	5	115	4.20	40	12	160	10	12.0	6.2	12.0	160	25.0	9.6
D3149GS1F	9 65.1	7.3	350	631	0.8	7.7	0.67	13.0	139	4.20	39	13.3	174	68	19.2	53.3	76.2	95	24.3	14.0
LP15GS1	80.2	9.0	190	710	3.0	13.2	0. 70	16.7	216	5.98	125	13.0	82	100	14.0	150	13.4	116	24.1	3. 2
NP38GS1	100.0	7.6	600	900	2.7	13.4	1.77	11.0	300	6.49	8	6.4	40	16	9.6	7.4	9.0	128	25.0	1.5
D2185GS1	66.0	8.9	240	340	1.6	5.8	0.50	6.8	90	2. 92	19	12.0	1 10	16	11.0	21.0	12.8	102	26.2	6.4
D3102GS1	63.6	4.5	340	450	1.4	6.9	0.80	12.1	114	3.40	27	4.7	68	34	12.0	29.0	16.0	64	28.0	7.6

样品由宜昌地质矿产研究所岩矿测试中心分析测试

图 3 铁格隆地区含矿玢岩稀土元素分配曲线图 Fig. 3 Chondrite-normalized REE distribution patterns for the ore-bearing porphyrite from the Tiegelong region

在 *R*1-*R*2 阳离子 图解上, 闪长玢岩与石英闪长 玢岩样品均落入"板块碰撞前或消减的活动大陆边 缘"环境(图 5), 这与(Yb+Ta)-Rb 图解(图 6) 反映 的"岩石属火山弧花岗岩"的结论一致。区域地质调 研表明, 该区班公湖-怒江洋盆(中特提斯洋)在早侏 罗世扩张成深海洋盆, 中一晚侏罗世由拉张向挤压 体制转换, 至晚侏罗一早白垩世洋壳开始向南北两 侧双向俯冲, 并以南向俯冲为主。随着洋壳向南的 俯冲作用加剧, 在冈底斯-念青唐古拉板块北缘形成 了大规模的以去申拉组(K1*q*) 钙碱性火山岩为代表 的岛弧型岩浆带, 同时由于向北的快速俯冲消 减¹⁰, 在羌塘地块南缘亦产生了小规模的岛弧型岩

图 4 含矿玢岩微量元素分配曲线图

Fig. 4 N-MORB-normalized trace element distribution patterns for the ore-bearing porphyrite from the Tiegelong region

浆活动。该区数目众多的玢(斑)岩类岩株岩瘤正是 在这一背景下形成就位的。

同时,由玢(斑)岩的岩体构造特点分析,岩体总体展布近东西向,与班公湖-怒江洋壳俯冲带边界等 主要构造形迹走向协调,亦表现出"俯冲型"岩体构造的特点。

5 结论与讨论

(1) 西藏改则县铁格隆地区含铜金矿玢岩以闪 长玢岩和石英闪长玢岩为主,岩体形成于早白垩世, 均呈小型岩株及岩瘤状产出,属岩浆一次脉动侵位 形成的高位(超浅成)岩体。玢岩岩石中含较多磁铁

I. 地幔分异的花岗岩(大洋环境);III 1型科迪勒拉花岗岩(碰撞 前或消减的活动大陆边缘环境);III 1型加里东花岗岩(碰撞后隆 升环境);IV.造山晚期一晚造山期花岗岩;V.A型花岗岩(非造 山环境);VI S型花岗岩(同碰撞造山环境)

Fig. 5 R_1 - R_2 diagram of cations in the ore-bearing porphyrite from the Tiegelong region

I = mantle-differentiated granite (ocean setting); II = I-type Cordillera granite (pre-collision or subducted active marginal setting); III = I-type Caledonian granite (post-collision uplift setting); IV = late orogenic granite; V = A-type granite (anorogenic setting); V = S-type granite (syn-collision orogenic setting) (other symbols as in Fig. 2)

矿,表明其成岩岩浆为氧化型岩浆。岩石中 SiO₂ 含 量为57.98%~64.64%,Al₂O₃ 为15.02%~16.97%, K₂O+Na₂O 为5.11%~7.65%,岩石里特曼组合指 数(σ)为1.43~3.32,属钙碱性岩系和高钾钙碱性岩 系;岩石尤以铝含量较高为特点,其铝饱和指数(A/ NKC 分子比)多大于1.0,部分样品大于1.1。地球化 学分析表明,岩石以流体活动性强的大离子不相容 元素 Rb、Ba、Th、K 及 LREE 的高度富集和流体活动 性弱的高场强元素 Nb、Ta、Ti 及 HREE 的明显亏损 为特点,具有世界含矿斑岩的共有特征。含矿玢岩 形成于班公湖-怒江洋盆(中特提斯洋)俯冲消减构 造环境,岩浆来源于壳幔结合部的上地幔或由幔源 岩浆受到壳源物质的强烈混染。

(2)该区含矿岩石与玉龙 Cu 矿带及冈底斯 Cu 矿带含矿岩石的岩石学、岩石化学及稀土元素地球 化学等特征和产出的构造环境均有明显差异,而在 微量元素方面大体相似。冈底斯矿带及玉龙矿带含 矿斑岩多为花岗闪长斑岩和二长花岗斑岩,少数为 石英二长斑岩,而该区含矿玢岩以闪长玢岩、石英闪 长玢岩为主,少量花岗闪长斑岩,较上述两带明显偏

图 6 含矿玢岩(Yb+Ta)-Rb 图解

VAG.火山弧花岗岩; WPG.板内花岗岩; S-COIG. 同碰撞花岗岩; ORG.洋中脊花岗岩

Fig. 6 (Yb+Ta) = Rb diagram of the ore-bearing porphyrite from the Tiegelong region

VAG = volcanic arc granite; WPG = within plate granite; S-COIG = syn-collision granite; ORG = oceanic ridge granite (other symbols as in Fig. 2)

基性。岩石化学成分上,该区含矿玢岩较冈底斯铜 矿带含矿斑岩的 SiO₂ 含量平均低约6.2%, Al₂O₃ 高 出0.61%, 钾质含量相对较低, 玉龙矿带及冈底斯矿 带含矿斑岩为高钾钙碱性-钾玄岩系列岩石,该区则 以钙碱性-高钾钙碱性岩石系列为主;稀土元素分馏 较弱,轻重稀土比值比于上述两带大幅偏低,显示了 成岩岩浆含有更多的"地幔"成分。微量元素与上述 两个矿带相当,即以富集元素 K、Rb、Ba、Th、LREE 和 亏损 Nb、Ta、Ti 为主要特征,并在 N-MORB 标准化的 微量元素分布图上出现较一致的正、负异常。

含矿斑(玢)岩的岩石成因、成岩的构造环境与 动力学背景亦不相同:冈底斯矿带含矿斑岩形成于 喜马拉雅期(15~10Ma)雅鲁藏布江缝合带闭合之后 的晚造山阶段,显示 I型和 A型花岗岩过渡的特征, 可能属碰撞后地壳伸展作用的产物,发育于碰撞造 山带的崩塌阶段(Harrison et al., 1992);铁格隆地区含 矿岩石形成于燕山中晚期(约130~120Ma)班公湖-怒江洋盆俯冲作用阶段,属 I型花岗岩。据李胜 荣^[4]对该区成矿早期(黄铁)绢英岩化闪长玢岩(岩 石中原生矿物受热液蚀变后同位素组成发生分馏而 所测得和年龄值为热液活动的年龄)的 K-Ar 年龄测 定值为119.25±1.73Ma可知,该区成矿作用发生时 间比成岩时间略有滞后,表明其成岩与成矿为同一 构造环境,均属洋壳俯冲构造背景下的岩浆弧环境。

斑岩型铜矿作为主要的铜矿床类型,目前已确

认其产出环境有两种,即岩浆弧环境和碰撞造山带 环境,就本区含矿玢岩岩石特征、形成的构造环境和 对比结果来看,与代表碰撞造山带环境的玉龙斑岩 铜矿、碰撞后环境的冈底斯斑岩铜矿不同,而与环太 平洋斑岩铜矿带,如智利安第斯斑岩铜矿的含矿岩 石较为类似。

(3)调查表明,铁格隆地区铜金矿(化)体多呈大 小不等之脉体产出,赋存于岩体边部裂隙和岩体外 接触带的裂隙和构造破碎带中,而远离裂隙的部位 基本不具矿化,其矿体产出状态、矿石特征均表明属 典型热液成因的斑岩型铜金矿床。从本次调查及前 人所取资料,尤其是微量元素测试成果来看,区内岩 体均不具有较高的铜、金含量背景值,其矿体围岩侏 罗系曲色组和色哇组碎屑岩及火山岩中的 Cu、Au 亦与地壳丰度相近^[8],矿质来源于岩体和含矿地层 的可能性极小。

近年来,对该区金矿稀土及微量元素的研究结 论表明¹¹,成矿物质主要来自闪长岩岩浆,部分海水 参与了成矿作用。同时,对该区矿石的硫、氧及硅同 位素的测试分析表明¹⁴,矿床中的硫均来自深源岩 浆,且未经复杂的表生循环,成矿流体主要为受到海 水强烈改造的岩浆热流,与成矿密切相关的硅质可 能来自基性或中基性岩浆岩,应是造山带演化过程 中海底下地壳物质对成矿作用作出贡献的标志。

综上分析,伴随早白垩世班公湖-怒江洋壳的大 规模俯冲,壳幔结合部的上地幔岩浆被俯冲到深部 的洋壳组分交代和混染,形成玢岩岩浆并迅速上升 侵位。在此过程中,富含海水的俯冲洋壳因脱水作 用产生大量的热液流体,流体在漫长的运移过程中 与富含Cu、Au 等矿质及硫化物的岩浆热流混合,并 沿早期玢岩岩浆通道上侵,在岩体的冷凝收缩所产 生的原生裂隙及围岩裂隙中就位。这与目前国内外 对斑岩铜矿床的研究结论"形成略晚于斑岩体形成 时代,并在空间上主要分布于斑岩体或其内外接触 带中"是一致的。

参考文献:

- [1] 肖润,李胜荣,傅璐珈,等.西藏改则县铁格山金矿稀土及微量 元素研究[J].西藏地质,2002,21(2):13-18.
- [2] 李胜荣, 肖润, 周肃, 等. 西藏改则地区金成矿作用[J]. 矿床地 质, 2005, 24(1): 1-13.
- [3] 陈玉禄,徐天德,张宽忠,等.西藏改则地区上三叠统亭共错组的建立及其意义[J].地质通报,2006,25(12):1409-1412.
- [4] 曲晓明, 辛洪波. 藏西班公湖斑岩铜矿带的形成时代与成矿构 造环境[J]. 地质通报, 2006, 25(7): 792-799.
- [5] ISHIHARA S. The magnetite-series and ilmentite-series granitic rocks
 [J]. Mining Geology, 1977, 27: 293-305.
- [6] SILLITOE R H. Characteristics and controls of the largest porphyry coppergold and epithemial gold deposits in the circum-Pacific region [J]. Australian Journal of Earth Sciences, 1997, 44: 373-388.
- [7] TARKIAN M, STRIBRNY B. Platinim-group elements in porphyry copper deposit: a reconnaissance study [J]. Mineralogy and Petrology, 1999, 65: 161–183.
- [8] 曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带.西藏第二条"玉龙"铜矿带?[J].矿床地质,2001,20(4):355-364.
- [9] 侯增谦,曲晓明,黄卫,等.冈底斯斑岩铜矿成矿带有望成为西 藏第二条"玉龙"铜矿带[J].中国地质,2001,28(10):27-29.
- [10] KAPP P, MURPHY M A, Yin A et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet [J]. Tectonics, 2003, 22(4): 3-23.

Genesis of the ore-bearing porphyrite in Tiegelong, Gerze, Xizang

GOU Yong-dong, CHEN Yu-lu, LIU Han-qiang (Sichuan Institute of Geological Survey, Chengdu 610213, Sichuan, China

Abstract: The ore-bearing rocks in Tiegelong, Gerze, Xizang consist of dioritie-porphyrite and quartz diorite-porphyrite which are assigned to the calc-alkaline and high-K calc-alkaline rock series characteristic of I-type granites. These rocks resulted from the tectonic settings of the Early Cretaceous Bangong Lake-Nujiang oceanic basin subduction. The rock-forming magmas comprise oxidized magmas derived from the juncture of the crust and mantle and are highly contaminated by the crust-derived matter. There are gaps in rock type, petrochemistry, geochemistry and tectonic setting for the ore-bearing rocks from the Yulong and Gangdise porphyry belts and the copper-gold deposits in the study area, implying that the copper-gold deposits in the study area should belong to the "ialsnd-arc" porphyry-type copper-gold deposits varying from the "collision" and "post-collision" porphyry-type deposits in geodynamic setting and mineralization mechanism. **Key words.** Gerze; porphyrite; porphyry-type copper-gold deposit; Xizang