文章编号:1009-3850(2007)02-0020-06

青海省治多县扎那日根岩体特征及构造意义

李 莉,白云山,牛志军,段其发,王建雄

(宜昌地质矿产研究所,湖北宜昌 443003)

关键 词:治多;中酸性岩体;构造意义;青海

中图分类号: P588. 12⁺1; P588. 12⁺2 文献标识码: A

羌塘东部地区 1:25 万区域地质调查中, 在治多 县扎那日根一带新发现了扎那日根黑云母石英闪长 岩一花岗闪长岩岩体。笔者从岩石学和地球化学、 同位素等方面对扎那日根岩体进行了较详细调查, 分析了成因类型, 并对其形成构造环境进行探讨。

1 地质特征

扎那日根岩体为一复式岩体,由早期的石英闪 长岩和晚期的花岗闪长岩组成。黑云母石英闪长岩 体由3个形状不规则的侵入体组成,面积约5.5km², 小岩株状产出,被晚期花岗闪长岩侵入(图1)。花 岗闪长岩岩体呈不规则的圆状,地貌上形成高耸陡 峻的山脉,最高点海拨5550m,其上有常年积雪形成 的冰川,出露面积约36km²,呈岩株状。副矿物组合 为锆石-磷灰石-榍石。该岩体被下侏罗统那底岗日 组不整合沉积覆盖。

2 岩石学特征

黑云母石英闪长岩呈浅灰色,中细粒半自形粒 状结构、块状构造。岩石由斜长石(65%~70%)、石 英(4%~8%)、钾长石(2%~6%)、普通角闪石 (6%~10%)、黑云母(6%~10%)、金属矿物(1%~2%)及其他少量副矿物(榍石、磷灰石)组成。斜长石为半自形,具简单环带,中心部分黝帘石化较强,最大粒度0.6×1.1mm;普通角闪石为长柱状或针状,个别见绿泥石化;黑云母几乎全蚀变为绿泥石。 岩体中心部位矿物粒度增大,含有斑晶,斑晶为斜长石,最大可达2.5×7mm。

花岗闪长岩呈砖红色,似斑状结构、细粒花岗结构、块状构造。岩石由微斜长石(13%~18%)、斜长石(46%~58%)、石英(23%~31%)、黑云母(1%~4%)及少量金属矿物、磷灰石、锆石组成。微斜长石偶见格子状双晶,见微细钠长石条纹;斜长石多半自形长板状,蚀变强;石英见两个世代,早期为粒状,晚期填隙状,有时见溶蚀交代长石。岩体中心部位矿物粒度增大,斑晶增多。

3 岩石化学特征

岩石化学成分见表 1。早期黑云母石英闪长岩 SiO₂ 含量为62.36%~64.67%,平均63.41%,偏中酸 性; 全碱(K₂O + N₂O)为6.42%~6.90%,平均6.71%,且 N₂O>K₂O,K₂O/N₂O为0.59~0.67;

收稿日期: 2006-04-24; 修改日期: 2006-09-30

第一作者简介: 李莉,女,1967年生,高级工程师,主要从事区域地质调查及地理信息工作。

资助项目:中国地质调查局"1:25万直根尕卡幅区域地质调查"(I46C003001)。

 $J_{a}b$

图 1 扎那日根一带地质略图

J₂x. 中侏罗统夏里组; J₂b. 中侏罗统布曲组; J₂q. 中侏罗统雀莫 错组, J₁n. 下侏罗统那底岗日组; T₃ δ). 石英闪长岩; T₃ γδ. 花岗闪 长岩; YZS. 雅鲁藏布江板块缝合带; BNS. 斑公湖 怒江板块缝合 带; XJS. 西金乌兰-金沙江板块缝合带; KQS. 昆仑-秦岭板块缝合 带

Fig. 1 Simplified geological map of the Zhanarigen region J_2x = Middle Jurassic Gyari Formation; J_2b = Middle Jurassic Biqu Formation; J_2q = Middle Jurassic Qoimaco Formation; J_1n = Lower Jurassic Nadiganiri Formation; T_3 \mathfrak{d} = quartz diorite; $T_3\gamma\mathfrak{d}$ = granodiorite; YZS= Yarlung Zangbo suture zone; BNS = Bangong Lake-Nujiang suture zone; XJS= Xi jir Ulan-Jinshajiang suture zone; KQS=Kunlun-Qinling suture zone

Al₂O₃ 含量为16.16%~16.51%,平均16.37%,较高。 晚期花岗闪长岩硅、碱含量较高, SiO₂含量为 65.73%~75.03%,平均72.86%,明显偏酸性;全碱 (K2O+Na2O)为6.94%~7.87%,平均7.30%。高干 黑云母石英闪长岩全碱含量; K₂O 含量为3.12%~ 4.18%,平均3.68%, Na₂O 含量为3.11%~4.34%, 平均3.63%,二者平均含量接近。花岗闪长岩低铝 (Al2O3 为12.15%~14.63%,平均13.15%),明显低 于黑 云 母 石 英 闪长 岩; 低 钛 (TiO₂ 为 0.20%~ 0.54%,平均0.37%)。随 SiO₂ 含量的升高, CaO、 MgO、FeO 含量总体降低,可能与角闪石、黑云母分 异有关^[1]。在 K_2O -SiO₂ 图解中(图 2),样品落低钾 (拉斑)岩区。黑云母石英闪长岩 A/CNK 为0.97~ 1.02、属准铝质岩石: 而花岗闪长岩 A/CNK 较高为 0.97~1.21, 多数样品均小于1.1, 应为铝正常序列。 黑云母石英闪长岩 σ为2.09~2.25,花岗闪长岩 σ 为1.51~2.14、均属钙碱性岩系。岩浆成分向高硅 富碱方向演化。

First group: granodiorite; second group: quartz diorite

4 地球化学特征

4.1 稀土元素特征

稀土元素含量见表 2。黑云母石英闪长岩稀土 总量为(189.68~217.61)×10⁻⁶,花岗闪长岩稀土 总量为 $(128.03 \sim 217.28) \times 10^{-6}$,均低于或稍高于 上地壳的210×10⁻⁶, 而明显高于下地壳的74× 10^{-6[3]}。石英闪长岩 LREE/HREE 比值为 8.80~ 11.10. 花岗闪长岩 LREE/HREE 比值为13.22~ 21.41. 属轻稀土元素显著富集型. 与黑云母石英闪 长岩高的(La/Yb) N值(11.07~15.57) 及花岗闪长岩 (La/Yb)N值(17.47~32.13)相一致。黑云母石英闪 长岩与花岗闪长岩配分曲线一致,呈斜率较大的右 倾式(图3),说明二者为同源岩浆的产物。黑云母 石英闪长岩 & Lu 为0.84~0.96, 无 Eu 负 异常或弱异 常,花岗闪长岩 &u为0.63~0.88表现为较明显的 Eu负异常,说明从黑云母石英闪长岩到花岗闪长岩 的演化是连续的、表明岩体有一定的分异作用。 石 英闪长岩 Sm/Nd 为0.18~0.20, 花岗闪长岩 Sm/Nd 为0.16~0.19,均低于陆壳平均值、总体具壳幔混合 源特征。

4.2 微量元素特征

微量元素分析结果见表 3, MORB 标准化配分型 式见图(图 4)。黑云母石英闪长岩和花岗闪长岩均 表现为富集大离子亲石元素 K、Ba、Rb, 及高场强元 素 Th, 相对于其它相邻元素而言, Sr、Nb、Ta, 略显亏 损, Ti、P 较强亏损。Nb/La=0.32~0.70, 与具岛弧 特征的钾质岩石相似。黑云母石英闪长岩与花岗闪 长岩显示的 P、Ti 亏损表明岩石受到了磷灰石、钛铁 矿的分离结晶作用影响。Nb-Ta-Ti 负异常和低Nb/

表 1 扎那日根岩体岩石化学成分(wg/%)

Table 1 Chemical compositions ($w_{B'}$ ⁰) in the Zhanarigen masses														
序号	岩性	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	M nO	MgO	CaO	N a ₂ O	K ₂ O	P ₂ O ₅	灼失量	总量
1		73.94	0.35	13.07	1.41	0.60	0.04	0.13	1.28	3.45	4.03	0.09	1.31	99.70
2		74.87	0.34	13. 11	1.29	0.97	0.03	0.12	0.54	3. 23	4. 18	0.09	0.82	99.59
5		71.35	0.38	13.38	1.68	1.00	0.07	0.14	2.32	3.65	3.34	0.11	2.19	99.61
4		75.87	0.20	12. 15	0.89	1.03	0.04	0.13	1.04	3. 11	3.95	0.04	1.09	99.54
5	花	75.35	0.22	12.38	0.96	1.25	0.04	0.15	1.09	3.43	3.59	0.04	1.11	99.61
6	岗	75.81	0.25	12. 17	0.60	1.65	0.04	0.38	0.47	3.47	4.04	0.05	0.40	99.33
7	闪	74.87	0.20	12.27	1.06	1.10	0.05	0.15	1.45	3. 15	3.88	0.04	1.31	99.53
8	K	75.03	0.21	12. 19	1.08	1.05	0.05	0.12	1.41	3.54	3.62	0.04	1.19	99.53
9	岩	65.73	0.75	14.63	1.76	2.90	0.08	1. 95	2.46	4.08	2.86	0.18	1.80	99.18
10		71.69	0.42	13. 53	0.99	2. 20	0.05	0.57	1.16	3.95	3.92	0.10	0.66	99.24
11		71.19	0.46	13.80	0.84	2.50	0.06	0.70	1.81	3.92	3.62	0.11	0.34	99.35
12		70.94	0.46	13.90	0.99	2.40	0.07	0.70	1.81	3.86	3.63	0.11	0.49	99.36
13		70.54	0.54	14.35	1.11	2.30	0.06	0.85	1.31	4.34	3. 12	0.13	0.73	99.38
14		63.19	0.86	16. 51	1.90	3. 53	0.13	1. 33	3.83	4.08	2. 72	0.31	0.87	99.26
15		64.67	0.75	16.16	1. 72	3.30	0.12	1.14	3. 27	4.26	2.64	0.25	0.96	99.24
16		62.36	0.94	16.44	2. 27	3. 77	0.15	1. 48	4.22	4.03	2.39	0.36	0.81	99.22

表 2 扎那日根岩体稀土元素分析结果(w_{B} 10⁻⁶)

Table 2	REE analyses	$(w_{\rm B}/10^{-6})$	for the	Zh ana rig en	masses
---------	--------------	-----------------------	---------	---------------	--------

序号	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y	LREE	HREE	δEu
1	38.30	61.50	6.10	23.10	4.09	0.77	2.90	0.47	2.55	0.50	1. 39	0.23	1.44	0.21	11.4	133.86	9.69	0.66
2	41.90	67.80	6.98	26.60	4.28	1.04	3.34	0.60	2.81	0.50	1. 58	0.25	1.57	0.23	12.2	148.60	10.88	0.82
3	40.60	59.30	5.90	18.00	3. 15	0.62	2.35	0.35	1.95	0.32	1.01	0.14	0.92	0.14	8.81	127.57	7.18	0.67
4	43.50	63.10	6.64	18.80	3.00	0.67	2. 22	0.34	1.65	0.28	0.83	0.12	0. 78	0.12	7.45	135.71	6.34	0.77
5	38.20	56.70	5.60	17.00	3.24	0.58	2.23	0.34	2.05	0.38	1.07	0.17	0.86	0.12	8.22	121.32	7. 22	0.63
6	37.40	55.90	6.49	17.80	3.04	0.64	2.20	0.34	1.80	0.34	0. 91	0.14	0.90	0. 13	7.68	121.27	6.76	0.73
7	44.00	63.80	6.45	19.00	3.36	0.69	2.46	0.34	1.94	0.36	1.02	0.15	0.90	0.14	8.75	137.30	7.31	0.71
8	40.30	60.70	7.18	22.60	4.12	1.11	3. 53	0.49	2.76	0.46	1. 33	0.20	1.13	0.16	10.6	136.01	10.06	0.88
9	45.10	71.20	8.36	26.40	4.47	0.99	3. 74	0.62	3.11	0.55	1. 68	0.26	1.62	0.26	13.3	156.52	11.84	0.73
10	59.60	91.00	9.48	34. 70	6.21	1.27	4.51	0. 74	4.15	0.74	2.17	0.33	2.08	0.30	16.6	202.26	15.02	0.71
11	43.40	75.20	8.39	36.00	6. 76	1.92	5.30	0.86	5.14	0.88	2.73	0.37	2.38	0.35	20.6	171.67	18.01	0.96
12	55.60	88.20	11.40	36.00	6.60	1.82	5.63	0.86	4.89	0.89	2.63	0.39	2.35	0.35	19.7	199.62	17.99	0.90
13	46.70	83.70	10.50	39.20	7.96	2.04	6.65	0.96	6.14	1. 09	3.10	0.48	2.78	0.41	25.5	190.10	21.61	0.84

图 3 稀土元素球粒陨石标准化曲线

Fig. 3 Chondrite-normalized REE distribution patterns for the Zhanarigen masses

图4 MORB 标准化配分型式(MORB 值据文献¹⁴) Fig. 4 MORB-nomalized distribution patterns (MORB values from Beviens et al., 1984)

表 3 扎那日根岩体微量元素分析成果(w_Β/10⁻⁶)

	Table 3 Trace element analyses ($w_{\rm B}/10^{-6}$) for the Zhanarigen masses																			
序号	Cu	Pb	Zn	Cr	Li	Rb	Cs	As	\mathbf{Sr}	Ba	V	Sc	Ga	Be	Nb	Та	Zr	Hf	U	Th
1	28.4	11	33	8.5	5.3	93. 9	5.6	8.98	178	619	20.5	2.18	16.5	2.83	20.1	3.44	166	5.54	1.9	3.92
2	30.2	10.6	33.5	9.3	5.2	92.2	3.7	5.56	174	674	20.8	1. 5	17	2.5	20.4	1.38	216	6.48	2. 98	22.6
3	48.2	6.8	33.8	15.1	8.5	88.8	4	8.23	230	778	23.4	2.5	16.3	2.31	20	1.84	249	7.27	0.52	9.5
4	10.2	2.7	18.5	8.3	14.3	89.1	3.1	1.18	122	726	15.4	2.24	15	2. 22	18.7	2.57	84.4	3. 28	2.92	9.84
5	10.4	6.7	21.6	3	12.5	88.4	3.2	1.67	136	659	16.4	1.29	13.6	2. 27	16.6	2.41	79.7	2.94	2.36	7.72
6	15.9	13.4	32.4	6.1	11.4	101	2.9	5. 08	183	846	14.5	1.6	12.5	2.14	18	1.87	88.2	3.11	2.58	6.16
7	10.9	8.05	22.3	11	8.5	92.7	3.1	3.4	147	741	14	1.62	14.6	2. 23	11.8	0. 54	66.5	2.15	2.7	14.6
8	13.2	28.8	26.9	18	11.2	87	3.2	2.8	176	704	15.6	2.09	13.2	2. 58	15.2	1.51	79	2.64	1.9	14.8
9	12.9	6.4	70.9	4.8	21.3	71.4	4.25	1. 32	635	673	71.9	7.82	25.1	2.47	30.2	2.37	382	9.58	0.52	7.17
10	45.8	7.3	59.8	4.8	21	69.1	4	1.41	592	686	65.8	6.81	24.7	2.81	23.5	1.42	299	7.97	1.21	10.3
11	19.9	4.5	71.2	6	22	63	3.7	1.46	593	609	93	10.7	27.1	2.98	27.9	1.88	336	8.77	0. 98	11.6
12	50.1	47.8	61.6	52	57.2	72	6.4	5	861	671	90.1	7.21	17.6	1.86	18.6	1.48	139	4.13	1.44	12.5
13	21.4	18.3	38.6	7.8	16.6	95.4	3.6	3. 33	295	670	27.4	2.56	17.3	1.99	17.7	0.59	130	4.83	1.67	14.6
14	10.7	23.8	36.5	7.85	21.4	95.3	2.7	1. 69	331	725	32.2	2.91	19.3	2. 22	18.1	1.15	121	4.38	1.78	13.6
15	9	55.7	35.4	6.8	21.2	93. 7	2.9	2.63	366	704	33.4	3.1	17.8	2.37	21.8	1.23	182	6.43	2.7	11.3
16	8.2	12.7	38.9	5.2	21.2	70.4	3.8	1. 19	446	671	39.9	3.35	18.1	2.37	22.9	2.17	179	6	2.13	8.83

表 4 扎那日根岩体 Nd、Sr 同位素组成 Table 4 Nd and Sr isotopic compositions for the Zhanarigen masses

样品号	MY1108/1	MY1108/1-1	MY1108/3	MY1108/ 3-2
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0. 0916	0.0906	0. 0899	0. 0881
¹⁴³ Nd/ ¹⁴⁴ Nd	0. 512664	0. 512646	0. 512626	0. 512656
$(^{143}Nd/^{144}Nd)_{i}$	0. 512535	0. 512518	0. 512499	0. 512531
$\varepsilon_{Nd}(t)$	3.4	3. 1	2.7	3.3
⁸⁷ Rb/ ⁸⁶ Sr	1. 492	1.518	2.334	1.674
⁸⁷ Sr/ ⁸⁶ Sr	0.70893	0. 70929	0.71120	0. 70964
(⁸⁷ Sr/ ⁸⁶ Sr) _i	0.70435	0. 70463	0.70403	0. 70450
$\varepsilon_{Sr}(t)$	1.4	5. 4	-3.1	3.6
T_{2IM}	718	744	744	722

La(0.32~0.70)的存在表明其不可能直接由软流圈 部分熔融产生^[3],其源区受到了俯冲组分的影响,或 者是源区部分熔融过程中存在残留钛酸盐矿物^{6]}。 但石英闪长岩未出现铕负异常和 Ti 亏损不明显,因 此源区钛酸盐矿物残留的可能性不大。 Rh/Sr 为 0.11~0.73,表明源区有壳源物质的加入。

5 Sr、Nd 同位素地球化学

扎那日根岩体 Sr、Nd 同位素分析结果列于表 4。(87 Sr/ 86 Sr)i 较低,变化于0.70403~0.70463之间; $\epsilon_{Nd}(t)$ 值较高,变化于2.7~3.4之间。在 $\epsilon_{Nd}(t)$ - $\epsilon_{Sr}(t)$ 图解(图 5),落入地幔线附近,显示了略亏损的地幔 源区特征,同时可能受到来自富集地幔物质的影响, 这种 Nd、Sr 同位素特征表明该岩体可能为板块消减 作用的产物。

Fig. 5 $\varepsilon_{Nd}(t)$ vs. $\varepsilon_{Sr}(t)$ diagram

6 构造环境分析

花岗岩的形成受其所处的大地构造环境、构造 活动的过程以及物源条件制约的观点已被广泛接 受。不同构造环境、条件下形成的花岗岩其岩石化 学特征存在差别。因而可以从岩石学的角度应用花 岗岩的岩石化学、地球化学特征判别其形成环境。 Picher(1983)把I型和S型花岗岩的概念与构造环境 结合起来,认为S型花岗岩是大陆碰撞的产物,I型 是造山后隆起的产物^[7]。扎那日根岩体黑云母石英 闪长岩和花岗闪长岩单元,在时空分布上具有联系, 形成时代接近,其岩石学、地球化学上既有联系和相 同、相似的演化趋势,又存在着一定的差别。岩石化 学上总体表现为具有中等的 K/(K+Na) 原子数比 值(0.28~0.46)和较高的Al₂O₃/(Na₂O+K₂O+CaO) 分子数比值(0.97~1.21)。 微量元素中以 Rb、Th 富 集.Nb、P、Ti 亏损和具较高的 Rb/Sr 比值为特征。 稀土元素特征值以中 Σ_{REE} 、高的(La/Yb) N 和低的 Œu为特征。根据岩石化学和矿物成分综合判断, 扎那日根岩体黑云母石英闪长岩和花岗闪长岩单元 具有 I-S 过渡型的特点,其岩浆含有幔源成分。综 上所述,印支期那日根黑云母石英闪长岩一花岗闪 长岩岩体应为壳幔混合产物。

在微量元素图解 Rb-(Y+Nb) 和 Rb-(Yb+Ta) 图解中(图6), 黑云母石英闪长岩和花岗闪长岩单 元样品均落入火山弧环境。在 *R*₁-*R*₂ 图上(图7), 黑云母石英闪长岩单元落入碰撞前消减地区和碰撞 后隆升地区的花岗岩内, 而花岗闪长岩单元落入重 熔-同碰撞花岗岩区及附近。显示了从早期黑云母 石英闪长岩单元到晚期花岗闪长岩单元的演化趋 势。本次工作在花岗闪长岩侵入体中获取了 216Ma、217Ma的单颗粒锆石 U-Pb 同位素年龄值 (表 4), 说明该岩体为印支期侵出, 时代为晚三叠 世。即随着拉竹龙-金沙江洋盆向南消减^{[8}, 扎那日 根岩体侵位。

7 结 论

(1) 扎那日根黑云母石英闪长岩一花岗闪长岩 岩体, 在岩石化学成分上花岗闪长岩表现为高硅、 碱、低铝、低钛, A/CNK 较高。黑云母石英闪长岩偏 中酸性, 属准过铝质岩石。稀土特征为轻稀土富集 型, 微量元素特征为富集大离子亲石元素 K、Ba、Rb, 及高场强元素 Th, (87 Sr/ 86 Sr) i 变化于0.70403~ 0.70463之间, ϵ_{Nd} (t) 值变化于2.7~3.4之间。构造 背景为火山弧型花岗岩。这些特征表明, 扎那日根 岩体的形成为壳幔混合作用的结果。

(2)花岗岩的形成及其岩石化学特征与它们的 形成环境的地壳演化的不同阶段存在着有机联系, 可以概括为洋壳俯冲一过渡壳一陆壳3个演化阶 段,扎那日根岩体石英闪长岩和花岗闪长岩单元的 岩浆来源,按照洋壳俯冲和一般模式,可以认为在俯 冲过程中,洋壳夹带了一定量的陆源物质,并在地幔 区形成混合岩浆,岩浆在上升侵位的途中又混合了 陆壳的成分,这种再次混合的岩浆上升到地壳浅处,

图 6 Rb-(Y+Ta) 和 Rb-(Y+Nb) 判别图判别图解(据 Pearce 等, 1984)

VAG. 火山弧花岗岩; WPG. 板内花岗岩; S-COIG. 同碰撞花岗岩; ORG. 洋中脊花岗岩石。第一组. 花岗闪长岩体; 第二组. 石英闪长岩

Fig. 6 Rb-(Y+Ta) and Rb-(Y+Nb) discrimination diagrams (after Pearce et al., 1984)

VAG = volcanic arc granite; WPG = within plate granite; S-COLG = syn-collision granite; ORG = ocean ridge granite. First group: granodiorite; second gropp; quartz diorite

图7 深成岩 R₁-R₂ 构造环境判别图(据 Batchelor 等, 1985)

①.地幔斜长花岗岩;②.碰撞前花岗岩;③.碰撞后花岗岩④.
造山晚期花岗岩区;⑤.非造山花岗岩;⑥.同碰撞花岗岩;⑦.后
造山花岗岩。第一组.花岗闪长岩岩体;第二组.石英闪长岩岩体;第三组. 埋扎黑云母二长岩体

Fig. 7 $R_1 = R_2$ diagram for plutons (after Batchelor et al., 1985)

经过岩浆分异等地质作用,便形成了石英闪长岩单 元和花岗闪长岩单元的岩浆源。

参加野外工作的还有涂兵、卜建军、甘金木、曾

波夫和段万军等同志。

参考文献:

- [1] 王岳军,范蔚茗,郭锋,等.湘东南中生代花岗闪长质小岩体的 岩石地球化学特征[J].岩石学报,2001,17(1):169-175.
- PECCERILLO A, TAYIOR S R Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey
 [J]. Contrib. Mineral. Petrol., 1976, 58(1): 63-81.
- [3] TAYLORS R. Chemical composition and evolution of the continental crust: The rare earth element evidence [A]. Mcelhinny. The Earth, Its Origin, Structure and Evolution [C]. London: Academic Press, 1979. 353-372.
- [4] BEVIENS R E, KOKELAAR B P, DUNKLE P N. Petrology and geochemistry of lower to middle Ordovician igneous rocks in Wales: A volcanic arc to marginal basin transition [J]. Proc. Geol. Ass., 1984, 95: 337–347.
- [5] MILLER C, SCHUSTER R, KIOTZLI U et al. Post collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis [J]. Journal of Petrology, 1999, 40(9): 1399–1424.
- [6] FOLEY S, AMAND N, LIU J. Potassic and ultrapotassic magmas and their origin [J]. Lithos, 1992, 28: 181–185.
- [7] PITCHER W S. Granite: Typology, geological environment and melting relationships [A]. Aetherton M P, Gribble C D. Migmatites, Melting and Metamorphism [C]. Nantwich: Shiva Publication, 1983. 277-287.
- [8] 潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化[M].
 北京:地质出版社,1997.122-128.

Characteristics and tectonic significance of the Zhanarigen rock masses in Zhidoi, Qinghai

LI Li, BAI Yun-shan, NIU Zhi-jun, DUAN Qi-fa, WANG Jian-xiong (*Yichang Institute of Geology and Mineral Resources, Yichang* 443003, *Hubei, China*)

Abstract: The Zhanarigen rock masses in Zhidoi, Qinghai consist of early biotite quartz diorite and late granodiorite. The granodiorite gives U-Pb zircon ages ranging between 216 ± 2 Ma and 217 ± 7 Ma (Late Triassic). The Zhanarigen rock masses are enriched in alkali and depleted in Ti, suggesting the calc-alkaline series. They also exhibit the enrichment of the macro-ion lithophile elements K, Ba and Rb, and high field strength elements Th, while slight depletion in Sr, Nb and Ta, marked depletion in Ti and P relative to their adjacent elements. The initial ⁸⁷ Sr/⁸⁶Sr ratios vary from 0.70403 to 0.70463, and the $\varepsilon_{Nd}(t)$ values from 2.7 to 3.4. Judged from the trace element discrimination diagrams, the Zhanarigen rock masses should be assigned to the volcanic arc granites derived from the mixed crust-mantle products. **Key words:** Zhidoi; intermediate to acidic rock mass; tectonic significance; Qinghai