文章编号: 1009-3850(2005)01-0210-07

牦牛坪矿-(Ce):一种新发现的稀土元素矿物

沈敢富1,杨光明2,徐金沙1

(1. 成都地质矿产研究所,四川成都 610082; 2. 中国地质大学,湖北武汉 430074))

摘要: 牦牛坪矿-(Ce) 属硅钛铈矿亚族的新成员, 发现于四川牦牛坪稀土矿床的碳酸岩、伟晶碳酸岩和碱性岩等矿脉中。与已知的同亚族矿物相比, 新矿物要么是 chevkinite-(Ce) B 位上的 Fe³⁺类似物, 要么同时是 polyakovite-(Ce) B 位和 C 位上的 Fe³⁺类似物。牦牛坪矿-(Ce) 直接从一类富 F、水和 REE 的岩浆-热液过渡阶段的成矿流体中结晶所成。新矿物得名于产地和稀土元素中 Ce 居优。牦牛坪矿-(Ce) 及其命名, 已获国际矿物协会新矿物及矿物命名委员会投票批准。

关 键 词: 新矿物种; 牦牛坪矿-(Ce); 硅钛铈矿亚族; 稀土矿床; 四川 中图分类号: P575 文献标识码: A

1 前 言

根据晶胞轴角 3 的不同, 硅钛铈矿族矿物可细 分成硅钛铈矿(chevkinite)亚族($\beta = 100^{\circ} \pm$)和珀硅 钛铈矿(perrierite) 亚族($\beta = 114^{\circ} \pm$)。作为矿物种的 硅钛铈矿和珀硅钛铈矿是稀土的钛-硅酸盐矿物。 该族其它已知矿物种有:①硅钛铈矿 strontiochevkinite (Sr, REE, Ca)₄ (Fe^{2+} , Fe^{3+}) (Ti, Zr)₄ Si4O22^[1] ——日本学者认定其是(Sr, REE, Ca)4Zr (Ti, Fe)₂ Ti₂Si₄O₂₂, 且 β 并 非 100.32°, 而 是 114.3(3)[°],应属珀硅钛铈矿亚族^{2,3};② rengeite Sr₄ZrTi₄Si₄O_{22^[2, 3]; ③polyakovite-(Ce) (REE, Ca)₄} (Mg, Fe^{2+}) (Cr³⁺, Fe³⁺)₂(Ti, Nb)₂Si₄O₂₂^[4] 和④ matsubaraite Sr4Ti5Si4O22^[5]。其中, rengeite 和 matsubaraite不是独立的稀土元素矿物。自然界产 出的硅钛铈矿族的稀土矿物种,大都变生呈非晶态, 以致人们对该矿物的晶体结构解析,用合成产物来 代表^[6],或者以变生矿物退火后的晶体来表征^[4]。 由此导致其真空间群究竟是 P21/a, 抑或是 C2/m

的歧见[3,6,7~10]。

据研究^[9~11], 硅钛铈矿族矿物理想的结构化 学式通式可表示为 $A^{3+}4B^{2+}C^{3+}2\text{Ti}_2O_8(\text{Si}_2O_7)$,这 里, A = REE、Th⁴⁺、Ca 和 Ba 等, $B = \text{Fe}^{2+}$ 、Mg、 Mn²⁺和三价阳离子等, $C = \text{Fe}^{3+}$ 、Cr³⁺、Al 和 Ti⁴⁺、 Nb⁵⁺等。因此,自身硅钛铈矿的理想结构化学式应 为 Ce₄Fe²⁺Fe³⁺Ti₂O₈(Si₂O₇),简化为 Ce₄Fe²⁺Fe³⁺ Ti₂Si₄O₂₂^[4]。

位于四川省冕宁县城西南约 22km 的牦牛坪矿 山,是我国仅次于白云鄂博铌-稀土-铁矿床的第二 大轻稀土矿床。尽管人们对该矿床的成因认识众说 纷坛,但对其与新生代(?)碱性-碳酸岩杂岩体存在 时间、空间和成因上的联系,似乎已达成共识。

1987年,张如柏等人首先发现该矿产出有未曾 变生的晶质硅钛铈矿,并对其作了较详细的矿物学 研究^[12]。嗣后,包括笔者在内的诸多学者,也对其 作过更加系统、深入的研究^{7,8,13~15]}。到了上世纪 90年代末,宋仁奎等主要藉助穆斯堡尔效应的研究, 确定了铁在该矿物晶体结构中的占位和Fe³⁺/

收稿日期: 2005-03-15

资助项目: 国家自然科学基金项目(40272027)

第一作者简介:沈敢富,1941年生,研究员,主要从事稀有元素地质矿产研究。

 $(Fe^{3+}+Fe^{2+})=0.61^{[16]}$ 。杨主明等人对产自四川 牦牛坪稀十矿床的天然晶质"富铁硅钛铈矿"的晶体 结构作了精测^[13],首次直接剖析了硅钛铈矿自身的 晶体结构: Fe^{3+} 、 Fe^{2+} 和 Ti 在该矿物中, 部分无序 占位——Fe³⁺和Ti 无序占了 *B* 位, Fe²⁺等无序占 了部分 C 位——致使本矿物的空间群由 P21/a 变 成了C2/m。然而他们给出的矿物经验化学式却带 了1.28摩尔的附加阴离子"OH"^[13,14]。笔者的再研 究表明,牦牛坪产出的所谓"富铁硅钛铈矿",实属硅 钛铈矿亚族的新成员,即一种新的稀土元素矿物。 按产地和国际矿物协会新矿物及矿物命名委员会 (IMA CNMMN)的有关规定——稀土元素为主要 成分的矿物命名.须加尾括号.内示主要稀土元 素^{7]},将该新矿物命名为牦牛坪矿-(Ce),英文名 maoniupingite-(Ce)。新矿物及其命名,业已得到 IMA CNMMN 的批准(批准文号 2003-017)。 牦牛 坪矿-(Ce)的原型标本已存放北京中国地质博物馆 典藏。

- 2 牦牛坪矿-(Ce)特征
- 2.1 产状及共生矿物

牦牛坪矿-(Ce)不同程度地穿插于英碱正长岩 和碱长花岗斑岩内的伟晶状氟碳铈矿-霓辉石-萤石-重晶石脉、细粗粒氟碳铈矿-霓辉石-萤石-重晶石网 脉、伟晶状氟碳铈矿-萤石-重晶石-方解石一方解石脉、细粗粒 氟碳铈矿-萤石-重晶石-方解石网脉和伟晶状含氟碳 铈矿的霓辉石-微斜长石脉中,尤以前4种矿脉较常 见;并多呈单体状零星分布于霓辉石、方解石、萤石、 重晶石、石英和碱性长石粒间,矿物边界大多较平 直。被霓辉石包裹或者包裹氟碳铈矿的牦牛坪矿-(Ce)亦有见及。基于与牦牛坪矿-(Ce)共生的萤石 中发育有典型流体-熔体包裹体^[18],充分表明牦牛 坪矿-(Ce)是从一类富氟、水和 REE 的岩浆-热液过 渡流体直接结晶所成。

牦牛坪矿-(Ce) 在牦牛坪矿床稀土矿物中, 含量 仅次于氟碳铈矿。在肉眼及光学显微镜尺度视域 中, 不同部位产出的牦牛坪矿-(Ce), 除晶体大小有 所差异外, 其它物理性质未见明显区别。

2.2 物理性质

牦牛坪矿-(Ce)结晶习性以柱状居多,柱面沿 b 轴延伸。以自形一半自形晶为主,可见到 {010}、 {110}和{210}等单形。晶面上往往发育有清晰的纵 纹。粒度为 0.01~2.00mm,但大 多为 0.10~ 1.00mm,最大者见达7.00mm。 矿物显墨黑色、褐黑色,半金属一沥青光泽,半 透明一不透明,条痕褐色,无解理,具贝壳状断口,无 磁性,但有中等电磁性。实测密度D = 4.63g/cm³ (显微比重法,取 15 次测值平均),计算密度为 4.81g/cm³。实测密度与理论密度之间的较大差别 昭示矿物业已遭受某种程度的非晶质化。矿物的显 微硬度 $H_v(50$ g) = 585 ~ 708kg/mm²,平均值为 647kg/mm²;相当于摩氏硬度值4.9~5.7,均值5.3 左右。

透射光下, 矿物呈深褐色, 具多色性, 浅褐至深 褐色。油浸法测得矿物的折射率 $\gamma'=1.970$, $\alpha'=$ 1.937。反射光下, 矿物为带浅黄的灰色, 弱非均值 性。在空气介质中反射率及颜色指数的测量计算结 果如表 1所示, 反射率色散曲线见图 1。在正交偏光 下, 矿物为二轴晶负光性。

图 1 牦牛矿-(Ce) 反射率色散曲线

牦牛坪矿-(Ce)的差热曲线显示,在456.7 ℃处 有一明显的吸热谷(图2),暗示牦牛坪矿-(Ce)应含 有一定量的层间水。这肇因于矿物业已经受某种程 度的非晶质化和/或风化。

图 2 牦牛坪矿-(Ce) 差热曲线

2.3 谱学特征

两件牦牛坪矿-(Ce)的红外光谱分析,由 SP3-300型光谱仪记录,KBr压片。从图 3 可以看出,位 于3413cm⁻¹处的很弱吸收,可能由羟基伸缩振动造 成。在1150~800cm⁻¹区间的中强吸收,或许系

图 3 牦牛坪矿-Ce 红外吸收光谱

Fig. 3 Infrared absorption specutra of maoniupingite-Ce

波长(nm)	$R_{\rm min}$ / %	$R_{\rm max}$ / $\%$	$R_{\rm max} / \frac{0}{10}$	
400	13.00	15.73	14.89	
410	12.88	15.35	14.35	
420	12.85	15.17	14.05	
430	12.82	15.01	13.72	
440	12.78	14.82	13.48	
450	12.70	14.72	13.25	
460	12.63	14.68	13.07	
470	12.52	14.60	12.95	
480	12.46	14. 55	12.85	
490	12.40	14.49	12.78	
500	12.35	14.47	12.71	
510	12.25	14.43	12.74	
520	12. 22	14.44	12.70	
530	12.18	14.46	12.72	
540	12.10	14. 39	12.67	
550	12.12	14.43	12.70	
560	12.13	14.47	12.72	
570	12.13	14.48	12.81	
580	12.10	14.45	12.91	
590	12.06	14.38	12.96	
600	11.95	14.26	12.98	
610	11.87	14. 16	12.98	
620	11.73	14.12	13.11	
630	11.56	14.01	13.18	
640	11.40	13.85	13.28	
650	11.18	13.66	13. 21	
660	11.02	13.39	13.14	
670	10.83	13.17	13.13	
680	10.64	13.02	13.20	
690	10.50	12.90	13.33	
700	10.38	12.86	13. 39	
视觉反射率 R _{可见光谱}	12.07	14. 37	12.84	
	0. 3269	0.3296	0. 3328	
巴 尼 坐怀 <i>y</i>	0. 3286	0.3307	0. 3279	
主波长 λd	481.5	482.2	- 557.9	
反射色浓度 Pe	0.0257	0.0149	0.0205	

实验条件: MPV-III光 度仪; SiC 标准, 相对误差±2%; 由中国地

表1 牦牛坪矿-(Ce)的反射率及颜色曲线

 Table 1
 The determinations of the reflectivity for 新maoniupingite-Ce

Si-O 四面体伸缩振动所致,包括 Si-O、Si-O-Si、Si-Si 和 O-Si-O 键振动。510cm⁻¹一带强吸收,可能由 Si-O 四面体弯曲振动引起。

(1)

牦牛坪矿-(Ce)中铁的穆斯堡尔谱由中国科学院地质与地球物理研究所李哲测试。使用PH-803计算机化的穆斯堡尔谱仪,在室温下测得牦牛坪矿-(Ce)的穆斯堡尔谱,显示其由一个Fe²⁺四极双峰和两个Fe³⁺四极双峰组所成(图4)。表2给出了牦牛

图 4 牦牛坪矿-(Ce)的穆斯堡尔谱图^[16]

Fig. 4 Mossbauer spectra of maoniupingite-Ce

表 2 牦牛坪矿-(Ce)的室温穆斯堡尔参数^[17]

 Table 2
 Mossbauer parameters of maoniupingite Ce at room temperatures

$\delta \text{ mm. s}^{-1} *$	$\bigtriangleup mm.s^{-1}$	$\Gamma mm. s^{-1}$	A/ %	价态
1.09(5)	2. 24(10)	0.51(5)	39	Fe^{2+}
0.40(3)	0.46(9)	0.35(7)	28	Fe ³⁺
0.36(6)	1. 14(36)	0.64(14)	33	Fe ³⁺

* δ 为相对 a-Fe的同质异能位移; △为四极分裂; Γ 为线宽; A为穆斯堡尔吸收面积比例

坪矿-(Ce) 的穆斯堡尔参数和四极双峰的指派, 以及 ${\rm Fe}^{3+}$ 和 ${\rm Fe}^{2+}$ 含量比。

2.4 化学性质

牦牛坪矿-(Ce)的电子探针成分分析值近40个, 但总量大都不足98%。这寓示牦牛坪矿-(Ce)可能 发生了程度不等的变生及风化作用。这与矿物的差 热分析结果相印证。兹将业已发表且总量为99%左 右的4件化学分析均值列于表3。根据牦牛坪矿 -(Ce)电子探针成分测试、中子活化、等离子光谱分 析和穆斯堡尔谱分析等结果,以氧原子数=22,重新 计算了牦牛坪矿半单位晶胞中的离子摩尔数。

表3清楚地凸现, 牦牛坪矿-(Ce) 的稀土元素分

表 3 牦牛坪矿-(Ce)的电子探针分析

Table 3 Microprobe analyses of maoniupingite-Ce

组分	含量(均值和]范围值, w ß %)	探针标样
SiO ₂	20. 03	18.64~20.58	合成-CaSiO3
Al ₂ O ₃	0.17	0.00~0.40	钾长石
TiO ₂	16.05	15.08~17.34	钛铁矿
ThO ₂	0. 41	0.00~1.64	合成~ThO2
FeO _{total}	(11.78)	9. 58~12. 33	" 钛磁铁矿"
Fe ₂ O ₃ * *	7.99		
FeO * *	4. 59		
MgO	0.17	0.00~0.34	橄榄石
MnO	0. 32	0.00~0.67	合成~MnO
CaO	3. 39	2.86~3.91	合成-CaSiO3
Nb_2O_5	2. 79	1.77~3.55	合成-Nb ₂ O ₅
La ₂ O ₃	12. 73	11.62~14.05	含La玻璃
Ce ₂ O ₃	23.03	20. 41 ~ 24. 4	含 Ce 玻璃
Pr ₂ O ₃	1. 58	0.27~2.60	含Pr 玻璃
Nd_2O_3	5.64	5.46~5.98	含 Nd 玻璃
$\mathrm{Sm}_{2}\mathrm{O}_{3}$	0.37	0.28~0.48	含 Sm 玻璃
Eu_2O_3	0.46	0.06~1.15	含 Eu 玻璃
Gd_2O_3	0.07	0.00~0.33	含Gd 玻璃
$\mathrm{Tb}_{2}\mathrm{O}_{3}$	0.01	0.00~0.03	含 Tb 玻璃
Dy ₂ O ₃	0.01	0.00~0.03	含 Dy 玻璃
Ho ₂ O ₃	0.03	0.00~0.10	含Ho玻璃
Er ₂ O ₃	0.02	0.00~0.04	含Er玻璃
Yb ₂ O ₃	0.02	0.00~0.08	含 Yb 玻璃
Lu ₂ O ₃	0. 19	0.00~0.74	含Lu玻璃
Y ₂ O ₃	0. 02	0.00~0.12	含Y玻璃
合计	100.09	98. 81 ~ 99. 98 $^{\triangle}$	

笔者的样品 2 件^[7],张如柏等^[12]和袁忠信等^[14]各一件;

* *据穆斯堡尔谱测 $Fe^{3+}/\Sigma Fe$ 比值换算; △ 其中 FeO 为全铁

量具有鲜明的强轻稀土选择配分特征。其中,尤以 Ce 最为突出。而且 Ce> La> Nd。

借鉴杨主明等对该矿物的晶体结构解析成 果^[13],牦牛坪矿-(Ce)的经验化学式可以写成 [(Ce_{1.70}La_{0.95}Nd_{0.41}Pr_{0.12}Sm_{0.03}Eu_{0.03}Lu_{0.01})_{3.25}Ca_{0.73}Th_{0.02}] 4.00(Fe³⁺0.32Ti_{0.22}Fe²⁺0.20Mg0.05Mn0.0 $\Box_{0.16}$)_{1.00}(Fe³⁺0.89Fe²⁺0.55Nb_{0.25}Ti_{0.21}Si_{0.04}Al_{0.04})_{1.98}Ti₂Si_{4.00}O₂₂,简化式为(REE, Ca) 4(Fe³⁺, Ti, Fe²⁺, \Box)(Fe³⁺, Fe²⁺, Nb, Ti)₂Ti₂Si₄O₂₂。这充 分表明,牦牛坪矿-(Ce)是自身硅钛铈矿 B 位上的 Fe³⁺类似物,或者是 polyakovite-(Ce) B 位和 C 位上 的 Fe³⁺ 类似物(表 4)。

牦牛坪矿-(Ce)在王水、盐酸和硝酸中不溶解, 但可缓慢溶于硫酸和磷酸中,而且加热可使其溶解 加快。

2.5 X射线

牦牛坪矿-(Ce)的粉晶 X 射线分析数据及其指标化列于表 5。

矿物的单晶样品经回摆照相肯定,然后移至 RASA-5RP 型高功率四圆单晶衍射仪测试。对定位 参数进行最小二乘修正,获牦牛坪矿-(Ce)的精测晶 胞参数: a = 13.385(2) Å, b = 5.742(1) Å, c =11.059(2) Å, $\beta = 100.60(0.01)^{\circ}$; 晶胞体积 V= 835.5(2)Å³, Z=2; 空间群 C2/m。矿物属单斜晶 系。杨主明等人对牦牛坪矿-(Ce)作了结构精测.所 获其晶胞参数: a = 13.456(3) Å, b = 5.728(1) Å, c=11.083(2) Å; V=839.7(3) Å³; Z=2; 空间群 $C2/m^{[13,14]}$ 。汪春玲研究的矿物作单晶 X 射线研 究,结果为a=13.39Å,b=5.74Å,c=11.05Å, $\beta=$ $100.70^{\circ [13]}$ 。张如柏送样的四圆衍射仪测获 a=13. 35(2) Å, b = 5.72(6) Å, c = 11.30(3) Å; $\beta =$ 100.48°;空间群C2/m^[12]。上述4次测得和下述电 子衍射衍测获的牦牛矿-(Ce)的晶胞参数极其相似。 2.6 电子衍射分析及高分辨晶格象观察

取少量牦牛坪矿-(Ce)单晶颗粒,在玛瑙乳钵中 研成粉末,注入酒精使粉末成悬浮液,用预先制好的 喷金微栅,在悬浮液中捞取粉末,晾干后即供电镜用 的试样。使用 CM12 现代分析电镜,双倾试样台可 在±60°角度范围倾转。由各带轴电子衍射图测得 a=13.40Å, b=5.74Å, c=11.07Å, β=101°, 其衍 射规律是: hkl, h+k=2n; h0l, h=2n; 0k0, k=2n。 可能的空间群为C2/m, Cm, C2。在与定向带轴^[10]

14	tole 4 Comparison of ma	ioniupingite-te, chevkini	le and polyakov ne Ce and	perriente
重要特征	牦牛坪矿-(Ce)	硅钛铈矿	polyakovite-(Ce)	珀硅钛铈矿
<i>a</i> / A	13. 385(2)	13. 395(5)	13. 398(1)	13. 55
<i>b/</i> A	5. 742(1)	5. 745(2)	5. 6974(5)	5. 63
<i>c/</i> A	11. 059(2)	11. 086(3)	11.042(1)	11.70
β/°	100. 60(1)	100. 65(3)	100. 539(2)	113.6
Ζ	2	2	2	2
空间群	C2/ m	<i>C</i> 2/ m *	C2/ m	<i>C</i> 2/ m *
	5. 499, 20	5. 45, 21	5. 44, 40	5. 35, 10
	3. 490, 40	3. 485, 38	3. 48, 32	3. 52, 30
特		3. 472, 39		
征	3. 189, 80	3. 188, 94	3. 18, 50	
衍		3. 153, 62	3. 15, 40	
线	3.004,40	3. 001, 40	3. 01, 22	3. 01, 30
(d _{实测} , I)	2. 874, 40	2. 873, 49	2. 881, 10	2. 957, 90
	2. 760, 40	2. 760, 58	2. 752, 30	2. 928, 100
	2. 722, 100	2. 722, 100	2. 715, 100	2. 717, 20
变生程度	晶质但有所变生	大都变生	变生	变生
颜色	黑色	黑色	黑色	黑色
光泽	半金属-沥青	沥青	沥青	沥青
$D_{\text{gm}/\text{g}^{\circ}\text{cm}^{-3}}$	4. 63	4. 63	4.75	4.3
$D_{\text{tfg}}/\text{g}^{\circ}\text{cm}^{-3}$	4. 81	5. 102	5. 052	4. 77
摩氏硬度	4.9~5.7	5.0~5.5	5.5~6.0	5.5
文献	本研究	ICD D42-1394	[4]	ICD D20-0260

表 4 牦牛坪矿-(Ce)、硅钛铈矿、polyakovite (Ce)和珀硅钛铈矿之比较

* 真空间群有 C2/ m 和 P21/a的分歧, 笔者认为, C2/ m 和 P21/a都可以是硅钛铈矿族矿物的真空间群;

矿物分子式: 牦牛坪矿-(CE) ——(REE, Ca)₄(Fe³⁺, Ti, Fe²⁺, □)(Fe³⁺, Fe²⁺, Nb, Ti)₂Ti₂Si₄O₂₂, 硅钛铈矿——(REE, Ca)₄(Fe²⁺, Mg) Fe³⁺2(Ti, Nb)₂Si₄O₂₂^[4], polyakovite-(Ce) ——(REE, Ca)₄(Mg, Fe²⁺)(Cr³⁺, Fe³⁺)₂(Ti, Nb)₂Si₄O₂₂, 珀硅钛铈矿——(Ce, La, Ca)₄(Fe²⁺, Ca) (Ti, Al, Fe³⁺)₂Ti₂Si₄O₂₂

相对应的晶格条纹象中测得 a=13.02Å, c=11.02Å, $\beta=101$ °。从不同方向的高分辨晶格象观察,牦牛坪矿-(Ce)的晶格是完整的^[7,8]。

2.7 晶体结构精测评述

杨主明等虽将牦牛坪矿-(Ce)视为一种少见结 晶态"富铁硅钛铈矿"来作结构分析的,但他们取得 的研究成果很有见地,特别是关于矿物中部分阳离 子在 $B \cdot C$ 位上无序占位并导致矿物空间群发生变 化的见解很有创意。况且晶体结构精测的精度较 高,其偏离因子 R为 $0.024^{[13]}$ 。但笔者想指出的 是,既然他们认为矿物中应有附加阴离子,整个矿物 的电价才平衡^[13,14],但在其绘制的结构图上,却没 有体现出这一学术见解。其实,正如前面指出过的 那样,用于电子探针成分测试的样品都经受过某种 程度的非晶质化和风化作用影响,以致于化学分析 的含量只有92.84% ~94.01%。必须指出,新鲜的 硅钛铈矿族矿物不含水,笔者将在适当的时候,再次 试作牦牛坪矿-(Ce)的结构解析,以验证和完善他们 的有关认识。尤需注意牦牛坪矿-(Ce)的衍射数据 中有无不符合h+k=2n的 C 心格子衍射规律的弱 衍射点。如果存在这样的衍射点,尽管衍射较弱,但 不能忽视。因为,从结构精修的角度和衍射数据具 有非 C 心格子的衍射特征来看,这或许表示C2/m空间群结构是在忽略这些弱衍射点情况下,用强衍 射点精修的赝对称空间群的平均结构。倘若果真如 此,牦牛坪矿-(Ce)的对称性很可能应降至P21/a。

Table 5 X-ray power diffraction data of maoniupingite-Ce							
Ι	$d_{ m obs}$.	d_{cale} .	hkl	Ι	d_{obs} .	$d_{ m calc}$.	hkl
$ 5 \\ 20 \\ 35 \\ 30 \\ 40 \\ 80 \\ 20 \\ 20 \\ 30 \\ 40 \\ 40 \\ 40 \\ 100 \\ 20 \\ 20 \\ 20 $	6. 10 5. 449 4. 890 4. 615 3. 629 3. 490 3. 189 3. 155 3. 102 3. 079 3. 004 2. 874 2. 760 2. 722 2. 613 2. 543	$\begin{array}{c} 6.\ 148\\ 5.\ 438\\ 4.\ 880\\ 4.\ 609\\ 3.\ 625\\ 3.\ 487\\ 3.\ 189\\ 3.\ 150\\ 3.\ 093\\ 3.\ 079\\ 3.\ 001\\ 2.\ 872\\ 2.\ 759\\ 2.\ 719\\ 2.\ 717\\ 2.\ 612\\ 2.\ 540\\ \end{array}$	$\begin{array}{c} \underline{2}01\\ 002\\ 111\\ \underline{1}11\\ 003\\ 310\\ 311\\ \underline{3}12\\ \underline{1}13\\ 402\\ 401\\ 020\\ 312\\ 004\\ \underline{3}13\\ 402\\ 022 \end{array}$	$ \begin{array}{r} 10\\ 20\\ 50\\ 10\\ 30\\ 20\\ 40\\ 20\\ 10\\ 20\\ 20\\ 20\\ 20\\ 20\\ 10\\ 10\\ 10 \end{array} $	$\begin{array}{c} 2.\ 516\\ 2.\ 238\\ 2.\ 175\\ 2.\ 102\\ 2.\ 079\\ 2.\ 009\\ 1.\ 965\\ 1.\ 827\\ 1.\ 789\\ 1.\ 737\\ 1.\ 729\\ 1.\ 713\\ 1.\ 629\\ 1.\ 522\\ 1.\ 446 \end{array}$	$\begin{array}{c} 2.\ 517\\ 2.\ 244\\ 2.\ 173\\ 2.\ 099\\ 2.\ 078\\ 2.\ 008\\ 1.\ 964\\ 1.\ 826\\ 1.\ 787\\ 1.\ 736\\ 1.\ 726\\ 1.\ 713\\ 1.\ 629 1.\ 627\\ \end{array}$	$\begin{array}{c} 221\\ 403\\ \underline{4}21\\ 422\\ 601\\ 314\\ \underline{2}24\\ 224\\ 710\\ 315\\ \underline{6}22\\ \underline{4}06\\ 713\\ 331\\ \underline{3}16\\ \underline{7}14\\ \underline{3}33\\ \end{array}$

表 5 牦牛坪 矿-(Ce)的 X 射线粉晶衍射数据

铜靶,40kV;镍滤波,DMX/IIA 衍射仪。

同时,还将开展牦牛坪矿-(Ce) 经高温灼烧后的阳离 子有序化研究,以便深化硅钛铈矿族的矿物学知识。 2.8 牦牛坪矿-(Ce) 同相似矿物的关系

牦牛坪矿-(Ce)与同亚族的矿物种硅钛铈矿、 polyakovite-(Ce)和珀硅钛铈矿的关系如表 4所示。

3 小 结

(1) 在四川牦牛坪稀土矿床中, 曾被广泛称之为 硅钛铈矿的稀土矿物, 因其晶格中部分阳离子的无 序占位, 导致 *B* 位上的 Fe^{3+} 居优, 应视为传统硅钛 铈矿 *B* 位上的 Fe^{3+} 类似物, 或者视为 polyakivite-(Ce) *B* 位和 *C* 位上的 Fe^{3+} 类似物。实属新发现的 一种稀土矿物, 是硅钛铈矿亚族的新成员。

(2) 牦牛坪矿-(Ce) 虽呈天然晶质产出, 但在漫 长的地史演变中, 已程度不等地遭受到变生和风化 作用的影响, 其化学分析总量常较 98% 明显偏少、 矿物差热分析显示有层间水存在, 以及矿物的实测 密度同计算的理论密度值之间出入较大等, 皆盖缘 于此。

(3) 牦牛坪矿-(Ce) 中部分阳离子的无序占位, 致使其空间群由P21/a变为C2/m。以此为例用以 对硅钛铈矿族的空间群究竟是P21/a,抑或是 C2/m,作出有一定说服力的理论解释,然而这毕竟 是定性的大体说法,有深入探究的必要。

(4) 牦牛坪稀土矿床中, 牦牛坪矿-(Ce) 的含量 仅次于目前用于选冶的氟碳铈矿, 其潜在的稀土储 量与价值相当可观。但是, 矿山弃之不用, 任其流 失, 不但浪费资源, 而且污染环境, 吁请有关方面, 加

强管理。

参考文献:

- HAGGERTY S E, MARIANO A N. Strontian-loparite and strontian-chevkinite: two new minerals in rhemorphic fenites from the Parana Basin carbonatites, South America [J]. Comtrib. Mineral. Petrol., 1983, 84: 365-381.
- [2] MIYAJIMA H, MATSUBARA S, MIYAWAKI R et al. Rengeite, Sr₄ZrTi₄O₂₂, a new mineral, the Sr-Zr analogue of pernerite from the Itoigawa-Ohmi district, Niigata Prefecture, Central Japan [J]. Mineral Magazine, 2001, 65(1):111-120.
- [3] MIYAWAKIR, MATSUBARA S, MIYAJIMA H. The crystal structure of rengeite, Sr₄ZrTi₄ (Si₂O₇) O₈[J]. J. Mineral., Petrol., Sci., 2002, 97: 7–12.
- [4] POPOV V A, PAUTOV L A, SOKOLOVA E et al. Polyakovite-(Ce), (REE, Ca)₄(Mg, Fe²⁺) (Cr³⁺, Fe³⁺)₂(Ti, Nb)₂Si4O₂₂, a new netamict mineral species from the Ilmen Mountains, Southen Urals, Russia, Mineral description and crystalchemistry [J]. Can. Mineral., 2001, 39: 1095-1104.
- [5] MIYAJIMA H, MIYAWAKI R, ITO K. Matsubaraite, Sr₄Ti₅Si₄O₂₂, a new mineral, the Sr-Ti analogue of perrierite in jadeitite from the Itoigawa-Ohmi district, Niigata Prefecture, Japan [J]. Euro. J. Mineral., 2002, 14:1119-1128.
- [6] CALVO C, FAGGIANI R. A re-investigation of the crystal structures of chevkinite and perrierite [J]. Am. Mineral., 1974, 59: 1277-1285.
- [7] 杨光明, 潘兆橹, 吴秀玲, 等. 四川 昌北稀土矿 床中的硅 钛铈矿
 [J]. 矿物学报, 1991, 11(2): 109-114.
- [8] YANG GUANGMING, PAN ZHAOLU, WU XIULING et al. New investigation on the space group of chevkinite [J]. J. China

- [9] ITO J. A study of chevkinite and perierite [J]. Am. Mineral., 1967, 52: 1094-1104.
- [10] ITO J, AREM J E. Chevkinite and periente: synthesis, crystal growth, and polymorphism [J]. Am Mineral., 1971, 56: 307.
- [11] PENG Z, PAN Z. The crystal structure of chevkinite [J]. Scien tia Sinica, 1964 13(9): 1539-1945.
- [12] 张如柏,龙照云.川西南某地碱性花岗岩中的硅钛铈矿[J].成 都地质学院学报,1987,14(2):61-64.
- [13] YANG ZHUMING, FLECK M, SMITH M et al. The crystal structure of natural Fe-rich chevkinite-(Ce) [J]. Eur. J. Mineral., 2002, 14: 969–975.

- [14] 杨主明, 宋仁奎, 陶克捷, 等. 富铁硅钛铈矿的晶体化学[J]. 中国稀土学报, 2004, 22(3): 398-404.
- [15] 袁中信,施泽民,白鸽,等.四川冕宁牦牛坪稀土矿床[M].北 京:地震出版社,1995.
- [16] 宋仁奎,丁奎首,李哲.赛马矿和硅钛铈矿中铁的占位研究
 [J].科学通报,1999,44(13):1449-1451.
- [17] NICKEL E H, MANDARINO J A. Procedures involving the IMA CNMM N and mineral names, and guidelines on mineral nomenclature [J]. Can. Mineral., 1997, 25: 353.
- [18] 牛贺才,单强,陈培荣.岩浆-热液过渡阶段流体性质的研究
 ——以冕宁矿床为例[J].南京大学学报(自然科学版),1997, 33(1):21-27.

Maoniupingite-Ce: a new rare-earth mineral from the Maoniuping rareearth deposit in Mianning, Sichuan

SHEN Gan-fu¹, YANG Guang-ming², XU Jin-sha¹ (1. Chengdu Institute of Geology and Mineral Resources, Chengdu 610082, Sichuan, China; 2. China University of Geosciences, Wuhan 430074, Hubei, China)

Abstract: Maoniupingite-Ce approved by IMA CNMMN as a new rare-earth mineral and a new member of the chevkinite subgroup is identified in the veins of carbonatites, pegmatitic carbonatites and alkaline rocks from the Maoniuping rare-earth deposit in Mianning, Sichuan. Compared with the known equivalents, the new mineral is interpreted to be either the Fe^{3+} analogue of chevkinite-(Ce) at the B site or the Fe^{3+} analogue of polyakovite-(Ce) at the B and C sites, and directly crystallized from a type of F-, water- and REE-rich mineralizing fluids during the transitional stages of magmatic-hydrothermal processes.

Key words: new mineral species; maoniupingite-Ce; chevkinite subgroup; rare earth deposit; Sichuan