文章编号: 1009-3850(2004) 02-0001-07

南迦巴瓦峰地区雅鲁藏布蛇绿混杂岩带 矿物学特征及时代

耿全如^{1,2},潘桂棠²,郑来林²,孙志明²,

欧春生3, 董 翰3, 王小伟3

(1. 中国地质大学 地球科学学院,湖北 武汉 430074; 2. 成都地质矿产研究所,四川 成都610082; 3. 甘肃地勘局 第三地质矿产勘查院,甘肃 兰州 730050)

摘要: 雅鲁藏布蛇绿混杂带在南迦巴瓦峰地区呈弧形连续分布, 主要岩石类型有石英岩和云母石英片岩、绿片岩、斜 长角闪岩、变质辉长岩、变余辉绿岩等。主要造岩矿物中, 角闪石属富镁的镁角闪石、镁闪石、韭闪角闪石、浅闪角闪 石等: 单斜辉石为富镁的类型, 成分相当于透辉石; 橄榄石为典型的镁橄榄石; 斜长石在角闪岩类中为中长石, 是变 质成因的。利用地质温压计估算出的变质温压条件分别为: *t* = 500 ~ 650 ℃, *p* = 0.75 ~ 0.8GPa, 相当于角闪岩相变 质作用, 发生在47~47Ma左右。晚期经历了低温、高压变质作用, 形成高压型的多硅白云母, 时代为27~20Ma, 与该 区结合带边界阿尼桥断层和米林-鲁朗断层发生强烈走滑有关。地壳加速隆升、剥蚀时期形成的多硅白云母为中、低 压型。

关 键 词: 南迦巴瓦; 雅鲁藏布蛇绿岩带; 矿物成分; 时代; 西藏 中图分类号: P574.2 文献标识码: A

研究区位于雅鲁藏布大峡谷和喜马拉雅东构造 结地区。该地区近年来已成为地学研究的热点,国 内外专家已发表过不少有见解的论文,在高压麻粒 岩、区域隆升模式和地壳缩短量等方面取得重要进 展^{1~8]}。

对该区雅鲁藏布蛇绿岩带(IYS,下同)的研究 始于上世纪70年代^[9],至今已取得如下进展。

(1)IYS 在该区的空间分布和物质组成^[9~15]。 IYS 呈连续的弧形条带展布于南迦巴瓦楔入体和外 侧的冈底斯岛弧带之间,东宽西窄,东部最宽处约 10km,西部最窄处约2km。该带沿米林、白拉村、纠 忠、鲁郎南和排龙乡,经旁辛、墨脱南延出境(图1)。 带内岩石变质、变形强烈,按产状可分为基质和岩块 (片)两大类。岩块(片)包括蛇绿岩套中的超镁铁 岩、辉绿岩墙、辉长岩、石英(片)岩、大理岩和两侧老 基底片麻岩等。岩块(片)大小不一,大的延伸可大 于50km,小的仅约0.5m;基质是塑性变形十分强烈 的绢云母石英片岩、二云母石英片岩、绿片岩等岩石 组合。

(2)IYS 蛇绿岩的形成环境。常量元素、微量和 稀土元素示踪结果表明,蛇绿岩并非形成于大洋中 脊环境,而更可能是弧后盆地环境,扩张速度偏 低^[12]。对变玄武岩和石英(片)岩地球化学特征的 深入分析表明,该蛇绿混杂岩带可能由形成环境不 同的"碎片"组成,包括弧前扩张带、岛弧、弧后盆地 及洋岛等环境,是典型的消减带环境或称为俯冲带

收稿日期: 2004-04-08

资助项目:国土资源大调查项目"1:25万《墨脱幅》(H46C003004)地质调查"

第一作者简介: 耿全如, 1963年生, 副研究员, 博士生, 研究方向为火成岩和构造地质学。

图 1 雅鲁藏布大峡谷地区地质简图

1. 第四系; 2~8. 雅鲁藏布蛇绿混杂带: 2. 蛇绿岩岩片; 3. 超镁铁岩岩块; 4. 变辉绿岩岩块; 5. 石英片岩岩片; 6. 基质部分; 7. 南迦巴瓦岩 群外来岩片; 8. 念青唐古拉岩群外来岩片; 9. 石炭系; 10-13. 南迦巴瓦岩群: 10. 多雄拉混合岩; 11. 派乡岩组; 12. 直白岩组; 13. 高压麻 粒岩块体; 14-16. 冈底斯带: 14. 念青唐古拉岩群 15. 中新世二长花岗岩; 16. 早侏罗世花岗岩; 17. 前寒武纪片麻状花岗岩; 18. 河流及 流向; 19. 研究区位置

Fig. 1 Simplified geological map of the Yarlung Zangbo Grand Canyon area

1= Quaternary; 2 to 8= Yarlung Zangbo ophiolitic né lange zone 2= ophiolite slices; 3= ultramafic rocks; 4= metadiabase; 5 = quartz schist; 6= matrix; 7= allochthonous slices of the Namjagbarwa Group Complex; 8= allochthonous slices of the Nyainqentanglha Group Complex; 9= Carboniferous; 10 to 13= Namjagbarwa Group Complex: 10= Duoxiongla migmatites 11= Paixiang Fomation Complex (marble-bearing gneiss); 12= Zhibai Fomation Complex (HPG-bearing gneiss); 13= high pressure granulite; 14 to 16= Gangdise zone: 14= Nyainqentanglha Group Complex; 15= Miocene monzonitic granite; 16= Early Jurassic granite; 17= Precambrian gneissic granite; 18= niver and its flowing direction; 19= studied area

上叠型的(SSZ)蛇绿岩^[14~16]。对混杂带内石英片 岩的成分研究也得出相似结论

(3)IYS 蛇绿岩的地质年代学研究。在旁辛附 近超镁铁岩块中获得一件原生辉石的⁴⁰Ar/³⁹Ar 全 熔年龄和一件变玄武岩中角闪石的⁴⁰Ar/³⁹Ar 坪年 龄,分别为 200 \pm 4Ma 和 40. 14 \pm 1. 04Ma^[14, 17]。

本文介绍 IYS 带主要造岩矿物的成分特征、变 质温、压条件的估算及其与构造演化的关系。

1 区域地质背景

该区有3个主要的地质单元,即冈底斯岛弧岩 浆岩带、高喜马拉雅结晶基底"南迦巴瓦岩群", IYS 带呈弧形夹在两者之间(图1)。

南迦巴瓦岩群(An ∈ NJ)分布在"大拐弯"峡谷 的内侧,主要由黑云斜长片麻岩、角闪斜长片麻岩等 组成。根据岩石组合和变质、变形特征,将该群分成 3套岩石组合,即直白岩组、派乡岩组和多雄拉混合 岩,同位素年龄值相当于中、新元古代^[14,13]。

冈底斯岛弧带总体上由3部分组成:(1)前寒武 系变质基底,即念青唐古拉岩群(An $\in NQ$);(2)变 质盖层,主要为泥盆系松宗组、下石炭统诺错组、上 石炭统来姑组、下二叠统洛巴堆组,中侏罗统马里组 以角度不整合覆盖在在上述地层之上;(3)冈底斯岛 弧带中、北侧主要出露早侏罗世一晚白垩世花岗岩 类,南部出露中新世花岗岩。念青唐古拉岩群主要 由一套长英质片麻岩、条带状混合岩及大理岩组成, 岩石的混合岩化现象明显。这套岩石的Sm-Nd同位 素年龄测试,获得年龄值2296 ±63Ma、2178 ±12Ma (排龙一通麦)和1453 ±14Ma(冈戎勒一墨脱),相 当于古中元古界(甘肃区调队,1995,1 ²20万波密幅 地质图及说明书)。

2 雅鲁藏布蛇绿岩带矿物学特征

2.1 矿物组合

IYS 混杂带的基本成分在宏观上可分为岩片 (块)和基质两部分,基本岩石组合为各类石英片岩、 绿片岩、变镁铁、超镁铁岩块、大理岩等(图 2)。最 主要的造岩矿物有橄榄石、单斜辉石、角闪石、斜长 石、绢云母等,其中绢云母大多为高压型的多硅白云 母^[15]。

IYS 带内主要岩石类型有石英岩和云母石英片 岩、绿片岩、斜长角闪岩、变质辉长岩、变余辉绿岩。 不同的岩石类型矿物组合不同,其中超镁铁岩岩块 主要原生矿物为镁橄榄石+普通辉石+顽火辉石+ 斜长石(牌号在 An70 以上)+尖晶石等,变质以后 的矿物组合为透辉石+蛇纹石+滑石+透闪石等。 变质镁铁岩块中典型的变质矿物组合为:透辉石+ 角闪石(普通角闪石或阳起石)+斜长石(An20-30)+黑云母+石英±绿帘石±绿泥石;绿泥石+绿 帘石+阳起石钠长石+石英;铁铝榴石+角闪石+ 黑云母+绿帘石+斜长石;石英。石英(片)岩类典 型的矿物组合为:石英+白云母+黑云母+石榴子 石+斜长石±钾长石±兰晶石;白云母+黑云母+ 石英+钾长石+斜长石;石英+钾长石+白云母。 2.2 主要矿物成分特征

(1)橄榄石。橄榄石见于结合带东段的旁辛、加

图 2 IYS 带野外产状特征和岩石类型

A. 石英岩中的两期褶皱, 尖棱状、轴面直立, 与面理平行, 下部深色部分为变辉绿岩岩块, 摄于排龙乡东约 2km 处; B. 石英岩直立褶皱的转折端, 面理直立, 右翼深色部分为变玄武岩, 摄于排龙乡东约 3km 处

Fig. 2 Field occurrence and rock types in the Yarlung Zangbo ophiolitic mé lange zone

A. The two-phase sharp vertical folds in quartzite. The dark rocks in the lower part are metadiabase at a distance of about 2 km east of Pailong;

B. Vertical folds in quartzite and their hinge lines. The dark rocks on the right are metabasalt at a distance of about 3 km east of Pailong

3

热萨,西段的德母拉高地见有含橄榄石的超镁铁岩。 探针分析结果表明,这些橄榄石富镁、贫铁,其成分 主要为MgO、SiO₂,少量FeO,其余成分很少,是典型 的镁橄榄石。Fo的含量在90%以上,说明岩石来自 地幔。

(2)单斜辉石。结合带中镁铁质岩石变质较彻 底,原生的辉石均变成了角闪石,未见变质残余。超 镁铁质岩块中尚可见到原生辉石,是富 Mg 的单斜 辉石,AbO3 含量高达 3.44%(表1),其成分特征与 地幔岩中的单斜辉石相似^[18]。超镁铁岩和大理岩 中变质形成的单斜辉石富 Ca、Mg,AbO3 含量低于 1.7%,成分相当于透辉石。

(3)角闪石。在显微镜下,角闪石呈不同程度的 绿色。探针结果属富 Mg 的镁角闪石、镁闪石、韭闪 角闪石、浅闪角闪石等。

(4)长石。石英片岩中的斜长石属更长石、碱性 长石富K,Or分子含量达80%。石英片岩中的长石 由变质形成。超镁铁岩中的原生长石为拉长石,角 闪岩类中为中长石,是变质成因的。

2.3 变镁铁、超镁铁岩中主要造岩矿物及温压计算

利用 IYS 带中变质镁铁、超镁铁岩块中的主要 造岩矿物可以大致估算本带变质过程早期的温压环 境,石英(片)岩中多硅白云母反映的低温、高压变质 作用则可能是后期的变质环境。对于上述镁铁质岩 块中的变质矿物组合,利用单斜辉石地质温度计,估 算出原始辉石橄榄岩类的结晶温度大致为9500[°]C。 利用斜长石-角闪石、石榴子石-黑云母、二长石、斜 长石以及单斜辉石地质温压计^{19,20}估算出的变质 温压条件分别为: $t = 500 \sim 650^{\circ}$, $p = 0.75 \sim$ 0.8GPa(表 1),相当于角闪岩相变质作用,而由多硅 白云母估算的压力可能大于0.8GPa,说明晚期经历 了低温、高压变质作用(图 3)^[15]。

2.4 变质作用的时代

该区与 IYS 有关的同位素年龄值有 4 组(表 2):第一组200M a左右,可能代表蛇绿岩形成(岩石 结晶)的年龄,可能也是雅鲁藏布江新特提斯洋扩张 规模最大的时期。第二组47~43M a左右,代表新特 提斯洋闭合的时代,之后的强烈造山作用使蛇绿岩 套解体、变质变形,温压条件可能达到 t = 500 ~650 °C, p = 0.75 ~ 0.8GPa。第三组 27~20M a,该区 结合带边界阿尼桥断层和米林-鲁朗断层发生强烈 走滑,石英(片)岩类形成糜棱岩,甚至超糜棱岩。该

图 3 结合带岩石在变质过程中的温度-压力变化 Fig. 3 Temperature-pressure diagram showing the metamorphism processes of the rocks in the Yarlung Zangbo ophiolitic m^é lange zone

阶段可能代表该区 IYS 的峰值压力,以高压环境下 的动力变质为主。高压、超高压型多硅白云母形成 于这一阶段。第四组 12~5Ma 左右,代表退变质时 期,角闪石变成绿泥石等,本期形成的多硅白云母为 中、低压型。这一阶段对应地壳隆升、剥蚀作用加速 的时期^[19]。

3 结 论

雅鲁藏布蛇绿混杂带在南迦巴瓦峰地区主要岩 石类型有石英岩和云母石英片岩、绿片岩、斜长角闪 岩、变质辉长岩、变余辉绿岩等。主要造岩矿物角闪 石属富 Mg 的镁角闪石、镁闪石、韭闪角闪石、浅闪 角闪石等;单斜辉石是富 Mg 的类型,成分相当于透 辉石;橄榄石是典型的镁橄榄石;斜长石在角闪岩类 中为中长石,是变质成因的。利用地质温压计估算 出的变质温压条件分别为: $t = 500 \sim 650$ [°]C, $p = 0.75 \sim 0.8$ GPa,相当于角闪岩相变质作用,发生在 47 ~ 43Ma左右。晚期经历了低温、高压变质作用, 形成高压型的多硅白云母,时代为27 ~ 20Ma,与该 区结合带边界阿尼桥断层和米林-鲁朗断层发生强

* X
∆ t
ι.
閘門
Ú.
5
FQ.
~
ς.
_ #
7
\simeq
■
44
3
乃.
憲
444
医
1
ΠĽ.
ЩŲ.
E.
.
1
Jiπ
716
揤
lak
initi.
₩.
表

......

					Tabl	el M	icroprob	e analyse	s (w _B /9/	b) for the	major roch	(-forming 1	ninerals	and key	paramet	ers			
样号	M3b-119	M3b-1.	21			M2b-9			M2b-6	M2	b-4	M2b-2	M3	-187	EM	b-150	M3b-124	M3b-143	M3b-116
来 何 聞	称	资						德母拉	高地				₽₩-	咱布冬	¥ 张	加热萨	旁固	宗荣-加热萨	冷多-旁辛
岩柱	橄辉岩	橄辉;	 		石榴七	6石石英	片岩		教 教 輝 岩	● ● ●	撤告	角闪片岩	弊长)	角闪岩	 一 史 一 史	橄辉岩	绿片岩	绿片岩	含透辉石大田光
户 名 称	縷 櫢 石	秋 想 石	篼 緧 石	¢\$~ 御石 ■#	日本	# 长石	更长石	更长石	斔 櫢 右	透辉石	拉长石	镁角闪石	中长石	韭闪角 闪 石	镁闪石	次钙普 通辉石	浅闪角 以 石	镁绿钙 鱼闪石	透辉石
Na ₂ O	0.023	0.442 (0.014	0.052 0	. 198	2.599	10.13	9.678	0.004	0.301	3.208	1.577	8.26	1.811	0.304	0.528	2.116	1.928	0.171
MgO	51.53	14.37	0.05	4.348	9.01	0	0.015	0	51.08	16.54	0.004	13.82	0.015	8.995	20.89	19.81	9.029	9.727	17.97
Al ₂ O ₃	0.025	1.381 3	0.112 <u>2</u>	2.271 1	7.701	9.138	23.75	23.313	0.0285	0.722	31.521	10.767	24.48	13.81	2.096	3.444	12.823	15.157	1.7
SiO ₂	40.269	53.442 3	9.033 S	6. 779 3.	4.229 (53.915	59.451	62.574	40.946	53.531	50.417	45.337	61.006	42.063	55.171	54.889	42.631	43.658	54,706
K ₂ O	0	0.015	0.001	0	. 498	14	0.296	0.347	0	0.014	0.148	0.042	0.067	0.219	0.004	0.018	0.388	0.282	0.018
0°0	0.028	23.124 2	2.614	2.644 0	. 058	0.115	3.616	4.375	0.03	23.885	13.805	11.824	6.586	10.739	5.714	9.607	9.986	10.379	24.59
TiO ₂	0.02	0.077	0.117	0.064 4	.012	0.078	0	0.182	0.062	0.075	0.007	0.109	0.03	0.882	0.129	0.098	0.532	0.396	0.034
Cr2O	0.099	0	0.011	0.254 0	. 033	0.252	0	0	0.011	0.429	0.051	0.265	0.056	0.135	0.287	0.616	0.127	0.035	0.057
MnO	0.141	0.151	0.068	0.563 0	. 068	0.069	0	0.014	0.142	0.971	0.426	0.098	0.07	0.467	0.618	0.297	0.302	0.192	0.013
TFeO	6.649	5.574	6.027	31.62 1	8.43	0.081	0	0.221	7.343	3.151	0.105	10.08	0.117	15.69	10.6	6.773	16.38	14.24	0.843
Q Ž	0.386	0.042	0.383	0.117	0.1	0	0.019	0.089	0.379	0	0.117	0.1	0.02	0.021	0.284	0.262	0.112	0.064	0.044
山 山	99.17	98.614	98.43	98.71 9	3.334	00.25	97.279	100.79	100.03	99.618	99.809	94.022	100.71	94.832	96.093	96.345	94.424	96.061	100.15
⁺ Z	0.001	0.032	0.002	0.008	0.06	0.232	0.899	0.828	0	0.021	0.284	0.458	0.709	0.537	0.084	0.038	0.631	0.556	0.012
t Z ⁸ 7	1.878	0.798	0.006	0.519 2	. 093	0	0.001	0	1.848	0.907		3.084	0.001	2.050	4.426	1.085	2.071	2.157	0.964
Al ³⁺	0.001	0.061	2.642	2.104 3	. 253	1.038	1.281	1.213	0.001	0.031	1.696	1.900	1.277	2.490	0.351	0.149	2.327	2.659	0.072
Si ⁴⁺	0.985	1.993	2.906	2.949 5	. 338	2.943	2.721	2.763	0.994	1.971	2.303	6.790	2.701	6.436	7.847	2.018	6.566	6.499	1.971
Ъ Т	•	0.001	0	0	.889	0.822	0.017	0.02	0	0.001	0.009	0.008	0.004	0.043	0.001	0.001	0.076	0.054	0.001
t ບິ	0.001	0.924	1.803	0.227	0.01	0.006	0.177	0.207	0.001	0.942	0.675	1.897	0.312	1.760	0.870	0.378	1.647	1.655	0.949
Fe ³⁺	0	0	•	0	0	0						1.260		1.483		1.642	1.281		
Fe ²⁺	0.136	0.174	0.375	2.117 2	. 399	0.003		0.008	0.149	0.097	0.004	0	0.004	0.521	1.258	0.208	0.464	0.489	0.025
	Fo=93	MgSiO ₃ = 42		4 0	u ^{lw} = (Jr = 80	An=16	An=20	$F_0 = 93$	MgSiO3 = 47	An = 70.4	Al ^W = 1.21	An = 31	Al ^W = 1.56	AJ ^W = 0.15	MgSiO ₃ = 65	AJ ^W = 1.43	$Al^{W} = 1.5$	$M_{g}SiO_{3} = 50$
剷 꼫 教	$F_{a} = 7$	CaSiO ₃ = 49		4 0	N ^W =	Ab = 20	Ab=84	Ab=80	Fa = 7	CaSiO3 = 48	Ab= 29.6	AJ ^W = 0.69	Ab=69	Al ^W = 0.93	AI ^M = 0.2	$CaSiO_3 = 23$	Al ^{¥I} = 0.897	Al [¶] = 1. 159	$CaSiO_3 = 49$
		FeSiO ₃ = 9					_			FeSiO ₃ = 5						FeSiO ₃ = 12			FeSiO ₃ = 1
t	947°C			65C		500C	510C		949°C	525C			525C						
温田				0.8GPa(困解)									0.75					
. 4 ‡			-+	758GPa(1	t+]]									GPa					
漢		单 都離石 岡 井 十		石榴子3 云母渔(王-惠			斜长石 阎度计		单斜辉石 温 度 计			斜 依 石 健 度 计	御 (名 (石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石 石					

电子探针测试单位:成都地质矿产研究所,2000年;矿物温、压计算见参考文献[18.19]

表 2 研究区与结合带有关的同位素年龄

Table 2 Isotopic ages of the rocks associated with the Yarlung Zangbo ophiolitic né lange zone

样品号	岩性	采样位置	方法	年龄∕Ma	资料 来源	测试对象
N025	二云母片岩	鲁霞江对岸	K/Ar	218.63±3.63	章振根等 1992	角闪石
M 3X T-4	橄榄辉石岩	旁辛	⁴⁰ A v′ ³⁹ Ar	200±4	本项目	单斜辉石
N018	斜长角闪岩	马尼翁	K/Ar	141.7±2.46	章振根等, 1992	长石
N018	斜长角闪岩	马尼翁	K/Ar	46.63±1.02	章振根等, 1992	黑云母
$M_V(01)T-109$	含方柱石斜长角闪岩	米尼村	⁴⁰ A v' ³⁹ Ar	42.67±2.54	本项目	角闪石
M - 22- 2	角闪石黑云母片麻岩	马尼翁	K/Ar	26.5	郑锡澜、常承法 1979	
	云母石英片岩	各登	K/Ar	19. 87	甘肃区调队 1995	
M-61-4	黑云母片麻岩	加热萨	K/Ar	12.3	郑锡澜、常承法 1979	
M-73-1	白云母石英片岩	鲁古	K∕Ar	10.0	郑锡澜、常承法 1979	
M-75-2	黑云母石英片岩	八 玉	K/Ar	7.4	郑锡澜、常承法 1979	
M-84-4	黑云母片岩	扎曲	K/Ar	4.9	郑锡澜、常承法 1979	

烈走滑有关。地壳加速隆升、剥蚀时期形成的多硅 白云母为中、低压型^[13]。 (1)**:** 1–9.

- [9] 郑锡澜,常承法.雅鲁藏布 江下游地区地质构造特征[J].地质
 科学, 1979, (2): 116-125.
- [10] 张旗,张振禹,李 华. 西藏东部和南部变质岩中的白云母及 其岩石学意义[J]. 地质科学, 1980, (4): 340-347.
- [11] 章振根 刘玉海, 王天武, 等. 南迦巴瓦峰地区地质[M]. 北京:
 科学出版社, 1992. 106-117.
- [12] 耿全如, 潘桂棠, 刘宇平, 等. 雅鲁藏布大峡谷地区蛇绿混杂 岩带初步研究[M]. 沉积与特提斯地质, 2000. 20(1): 28-43.
- [13] GENG Q. PANG, LIUY et al. Preliminary study on the ophiolitic mélange in the Yalu Tsangpu grand canyon area [J]. 地学 前缘, 2000, 7(增刊): 53-54.
- [14] 耿全如, 潘桂棠, 郑来林, 等. 藏东南雅鲁藏布江蛇绿混杂带的物质组成及形成环境[J]. 地质科学, 2004, 39(3):1-19.
- [15] 耿全如, 潘桂棠, 郑来林, 等. 南迦巴瓦峰地区雅鲁藏布构造 带中石英(片)岩的岩石化学特征及变质条件探讨[J]. 矿物岩 石, 2004, 24(1): 76-82.
- [16] 郑来林, 耿全如, 欧春生, 等. 藏东南迦巴瓦地区雅鲁藏布江 蛇绿混杂岩中玻安岩的地球化学特征和意义[J]. 地质通报, 2003, 22(10-11): 18-21.
- [17] 任纪舜,肖黎薇.1:25万地质填图进一步揭示开了青藏高原 大地构造的神秘面纱[J].2004,23(1):1-11.
- [18] 靳是琴 李鸿超. 成因矿物学概论(下册)[M]. 长春: 吉林大学 出版社 1986.
- [19] 靳是琴 李鸿超. 成因矿物学概论(上册)[M]. 长春: 吉林大学 出版社 1984.
- [20] HOLDAWAY M J. Application of new experimental and gamet margules data to the garnet-biotite geothermometer [J]. American Mineralogist, 2000, 85: 881–892.

参考文献:

- [1] 丁林,钟大赉,潘裕生,等. 喜马拉雅东构造结上新世以来快速 抬升的裂变径迹证据[J].科学通报,1995,40(16):1497-1500.
- [2] 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 1996, 26(4): 289-295.
- [3] 刘焰, 钟大赉. 东喜马拉雅地区高压麻粒岩岩石学研究及构造
 意义[J]. 地质科学, 1998, 33(3): 267-281.
- BU RG J P, DAVY P, NIEVERGELT P et al. Exhumation during crustal folding in the Nam che-Barwa syntaxis [J]. Terra Nova. 1997, 9(2): 53-56.
- [5] BURG J-P, DAVY P, NIEVERGELT P, OBERLI F, SE-WARD D, DIAO Z, MEIER M. Exhumation during crustal folding in the Namche Barwa syntaxis [J]. Terra Nova, 1997, 9 (2): 53-56.
- [6] DING L, ZHONG D, YIN A, et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa) [J]. Earth and Planetary Science Letters, 2001, 192: 423-438.
- [7] 丁林, 钟大赉, 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特
 征极其构造地质意义[J].中国科学(D辑), 1999, 29(5): 385-397.
- [8] 王二七, B. C. Burch fiel, 季建清. 东喜马拉雅构造结新生代地壳 缩短量的估算及其地质依据[J]. 中国科学(D辑), 2001, 31

The mineralogy and ages of the Yarlung Zangbo ophiolitic mélange zone in the Namjagbarwa area, Xizang

GENG Quan-ru^{1, 2}, PAN Gui-tang², ZHENG Lai-lin², SUN Zhi-ming², OU Chun-sheng³, DONG Han³, WANG Xiao-wei³

(1. China University of Geosciences, Wuhan 430074, Hubei, China; 2. Chengdu Institute of Geology and Mineral Resources, Chengdu 610082, Sichuan, China; 3. Gansu Bureau of Geology and Mineral Resources, Lanzhou 730050, Gansu, China)

Abstract: The Yarlung Zangbo ophiolitic mélange zone is aligned as an arc along the Yarlung Zangbo G rand Canyon in the Namjagbarwa area, Xizang. The lithologies there consist mainly of quartizite, mica quartz schist, green schist, amphibolite, metagabbro and blastodiabase. The major rock-forming minerals are composed of: (1) amphibole including Mg-rich magnesio-amphibole, magnesio-cummingtonite, pargasite and edenite; (2) clinopyroxene including Mg-rich species corresponding to diopside in composition; (3) olivine including representative forsterite, and (4) plagioclase dominated by andesine of metamorphic origin in amphibolites. The temperatures and pressures for the metamorphism processes estimated from the geothermometer and geobarometer are: t=500-650 °C and p=0.75-0.8 Gp, corresponding to those for the amphibolite facies dated back to ca. 47-43 M a. The later low-temperature and high-pressure metamorphism resulted in the formation of the high pressure-type lepidomorphite dated back to ca. 27-20 M a, relative to the intense strike-slipping of the Aniqiao fault and M ainling-Lunang fault at the boundary of the Yarlung Zangbo ophiolitic mélange zone. The rapid up-lifting and erosion of the crust in the study area permitted the formation of lepidomorphite of medium- to low-pressure types.

Key words: Nam jagbarwa; Yarlung Zangbo ophiolitic mélange zone; mineral composition; times; Xizang