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Abstract: The stratal geometries and lithofacies patterns in sedimentary basins are
thought to be potentially important sedimentary indicators of tectonic events and
record the uplift history of the areas around orogenic belts or along active basin mar-
gins. The first occurrence of new clast types in the depositional sequences has been
used to mark initial uplift. The normal or reverse distribution of clasts throughout a
vertical section corresponding to a specific source may be expressed as episodic tecton-
ism. The ages of conglomerate intervals in foreland basins are generally believed to
represent the time of thrust sheet activity. Alternative coarsening- or fining-upw ard
cyclothems 100 m thick in extensional basins are usually interpreted to be rejuvenated
tectonic uplift and retrograded headw ard erosion. Recent research shows that the on-
set of fine-grained fluvial and lacustrine deposition is more consistent with rapid subsi-
dence in rift, pull-apart and foreland basins. The coarse-grained beds within the
basins record postorogenic denudation and progradation of gravel wedges during inter-
vals of tectonic quiescence. If tectonic loading due to crustal compression and thicken-
ing drives both the uplift of the mountain summits and asymmetric subsidence, a
wedge of sedimentary rocks thickens tow ard the mountain front and longitudinal river
systems are dominant. When erosion unloading causes isostatic uplift of remaining
peaks, a tabular depositional geometry of conglomerate strata in cross sections and
transverse drainage patterns perpendicular to mountains are present. According to the
theory of sedimentary response to tectonic events, we propose here that Cenozoic sedi-
mentary basins on and around the Qinghai-Xizang Plateau may provide significant evi-
dences of tectonic changes in different spatio-temporal scales. It may be an important
approach to test and constrain present dispute in regard to initio Indo-Asian continen-
tal collision, synchronism and diachronism of the Qinghai-Xizang Plateau rising and
growth, as well as deformation accommodation styles.
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The stratigraphic sequences (STR) in the source areas are indicated by A to D, and major faults by Fi, I and

F3. When the fault ( Fy) rises, the initial conglomerate sequences derived from the source areas cited above dis-

play the normal unroofing sequences ( UN) . Afterwards, the basinward prograded fault ( F2) forced the initial
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progradation of the fault (F3) continued, the pre-existing gravels were removed to produce the normal or re-

verse unroofing sequences. Finally, the repetitive erosion-transport led to the random distribution of clastic
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Fig.8 Schematic diagrams showing the subsidence and deposition in a foreland basin caused by tectonic load-
ing

A. The tectonic loading caused by the crustal compression and thickening gives rise to the uplift of the upper
most part of a mountain range, and the wedge shaped units were deposited in the foreland basin. B. During the
erosion of the thrust belt ( load removal) the sediments previously deposited in the proximal part of the foreland
basin are uplifted and eroded, transported more distally across the foreland region, and redeposited as tabular
forms. Continued erosion will further reduce the size of the load, leading to more isostatic uplift, thereby reduc-
ing the thickness of the foreland-basin fill. C. The river basins tend to be shortened laterally during thrust load-
ing, thus longitudinal streams are developed in the central and distal parts of the foreland basin. D. During the
erosion of the thrust belt (load removal), the uplift of the basement resulted in the basinw ard progradation of

transverse streams, while the longitudinal streams are only restricted to the distal part of the basin.
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