"全球沉积岩数据库"简介

罗崇迅 编译 (成都地质矿产研究所)

1988 年 2 月 · IGCP(国际地质对比计划)委员会批准设立 IGCP 269 项目 全球沉积岩数据库(A Global Data Base in Sedimentary Petrology)。该项目拟在五年内建成一个全球范围的沉积岩数据的原型数据库(Prototype Data Base)。此数据库的建立无疑将对全球性的沉积学对比研究·板块构造与地壳演化分析提供极大的方便和丰富的资料及依据。

1988年6月在日本奈良召开了IGCP 269项目的首次国际会议,这次会议作出了以下几个主要的决定:

- 1. 推选出日本奈良大学的 Niichi Nishiwaki—Nakajima 教授为该项目负责人,并在奈良大学设立中心办公室。
- 2. 建立 11 个地区工作小组,计有西欧组、东欧组、苏联组、中国组、南亚组、日本与朝鲜组、中东组、非洲组、美国与加拿大组、拉丁美洲组、澳大利亚与新西兰组。
- 3. 按沉积岩的类型和数据库的结构成立 6 个专题组:碳酸盐与蒸发岩组、陆源碎屑岩组、火山碎屑岩组、煤与石油组、铁硅质沉积与磷块岩组、数据库公用块(Header Block)组。

目前该项目正在进行第一个阶段的工作,即数据项的选取、数据表格式和公用块的设计。

现将公用块组的负责人,美国斯坦福大学的 John W. Harbaugh 教授新编写的"全球沉积岩数据库公用块初步设计方案"摘译如下,以便国内关心该项目的地质学家们提出修改意见,使之进一步完善。

一、公用块设计的基本前提

- 1. 数据库或文件的基本实体是"入口"(entry)。每个入口依属于一个标本或标本的集合体,这些标本须取自同一地理位置。但对不同成分的标本来说,应有一个以上的入口。
- 2. 对于每个人口,公用块里的数据型式和特殊项目应为求完善。换言之,在公用块里对有关资料的所有主要数据项应当提供次级人口(subentries)。
- 3. 将部分资料装入公用块是为了对入口进行检索。公用块要详细说明样品采自何处,由什么组成(如岩心,露头标本,取自海底或湖底未固结的沉积物等), 收集样品的人及时间,提供有关资料的种类(如露头照片, 满片的显微照片, 化学成分表, 由统计得到的众数分析数据表格等), 标本的基本岩石分类(如灰岩, 未固结的泥等)。

- 4. 在检索时,公用块应能提供大量的信息,但公用块不包含岩石本身的数据。
- 5. 该文件在形式上将完全是数字化的,并将通过数字技术译成密码进行维护、更新、检索与分散。图形资料,包括照片和绘图,不论黑白与彩色,也将通过数字化译成密码,换言之,将使用数字计算机,数字信息存储装置,包括磁带和软磁盘,CD ROMS(紧致磁盘,只读存储器),及数字显示装置,包括标准的字母数字终端和数字图象(黑白的和彩色的)终端。
 - 6. 该文件将包括多种类型的信息,在入口并列的基础上提出如下范例:
 - 1、字母数字信息
 - 1、数值信息
 - Ⅲ、图象信息
 - ① 绘图
 - a黑白
 - b彩色
 - ②照片(包括显微照片)
 - a黑白
 - b彩色

图象信息将以光栅形式存储。因此,最初的图形——照片或连续的线条图——在被编入文件之前需转换成数字形式。

二、关于入口的总体方案。

入口的总体方案如图1所示。该方案依顺序包含若干分级"层次"(Level),从初级

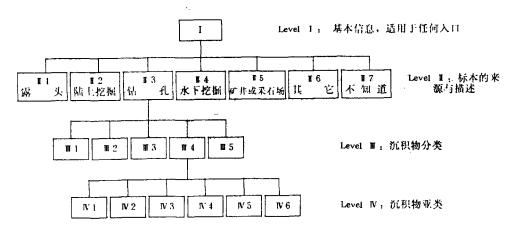


图1 IGCP 269 项目公用块建议性分级方案图

层次(Level)分支或扩展,渐次向下移至层次 I,层次 I,等等。层次 I 包含所有入口的公用数据基础,而层次 I 依赖于所收集的露头,钻孔或挖掘的样品的条件。层次 I 与层次 I 构成公用数据。层次 II 属于基本的沉积物类型,据待定的几个主要分类而定。层次 IV 是把基本的沉积物类型再进一步分成亚类。另外可能还有特殊的层次。

之所以把层次工和层次工考虑为"公用数据",是因为它们将提供有关项目的背景资料,但不提供每个标本岩石学的或沉积学的资料。

下面提供了一个层次 I 与层次 I 的调查表例,提问和回答的次序可调整并重新安排。 层次 I

层次 I 的信息对所有入口都是通用的,下面是一个推荐的、概括性的提问格式。空格线表示由回答者能够(或必须)提供的资料。

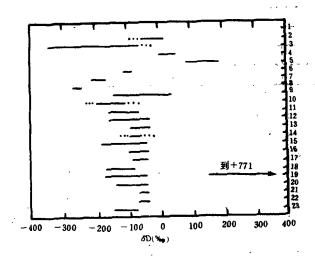
I 1 SEDBAS ID 数码(由数据中心提供)

	ACCOUNT ACCOUNT	
1 2	数据资料接收:	
Ι3	数据资料接收:	
	I 3. 1 文件不完全?	
	I 3.2 前后矛盾?	
	I 3.3 其它原因(详细说明)	
	如果接受,接受的数据	
I 5	数据进入 SEDBAS 文件	
I 6	对提供的人口进行个人回答:	
	16.1 姓名:	
	I 6. 2 地址:	
	16.3 电话:	
	16.4 单位:	
	了解这些数据的其他人(最多列三人) ·	
	I 6.11 姓名:	
•	I 6. 21 地址:	
	I 6.12 姓名:	
	[6.22 地址:	
	I 6.13 姓名:	
	I 6.23 地址:	
1 7	标本是否保存?[一]Yes [一]No	•
	17.1 如保存,在何处?	
	I 7.2 标本数或名称:	
18	144 L. M.A. S. Color Company	
	I 8. 1 国家或大洋	
	18.2 省或州	
	18.3 县	
	18.4 如果可能,当地调查系统的定位	_
	I 8.51 纬度[-]N [-]S	
	I 8.52 经度[-]E -]W	
	I 8.6 WMO (世界气象组织定位)	
	I 8.7 定位于陆地上?[-]Yes [-]No	
	I 8.71 如果不是,水深m	

- 19 提供的资料类型
 - I 9.1 数点(Point-count)数据
 - 19.2 化学分析
 - I 9.3 岩石组构
 - 19.4 总的沉积物特征,如交错层理及其它层理类型
 - 19.5 表面或颗粒照片
 - I 9.51 黑白
 - 19.52 彩色
 - 19.6 表面或颗粒图
 - 19.61 黑白
 - I 9.62 彩色
 - I 9.7 SEM 图
 - 19.8 薄片的显微照片
 - 19.81 黑白
 - 19.82 彩色
 - 19.9 露头、矿井或采石场工作面照片
 - 19.91 黑白
 - I 9.92 彩色
 - 19.10 露头或采石场工作面绘图
 - 19.101 黑白
 - 19.102 彩色
 - 19.11 X 射线分析
 - I 9.12 其它(详细说明)
- I 10 样品位置是否在露头、矿井或采石场工作面的照片或绘图上?[-]Yes [-]No
- I11 样品类型:
 - 111.1 手标本还是大块的岩石
 - 111.2 未固结的沉积物
 - 111.3 岩石碎块,如岩心的切块或碎块
- I12 样品来源(仅核对一个)
 - 112.1 露头
 - I 12.2 挖掘(不包括矿井与采石场)
 - [12.3 钻孔
 - I 12.4 水下挖掘
 - I 12.5 矿井或采石场
 - I 12.6 其它(详细说明)
 - 112.7 不知道

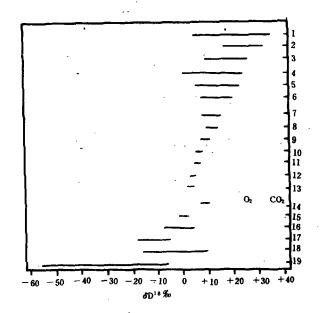
层次Ⅱ

层次 I 依赖于样品的"来源",如露头、钻孔等。只能有一个恰当来源,取决于层次 I 中对 "样品来源"的回答,即层次 I 中最后的次级入口。


1	1	取自一	- 露头	
		I 1. 1	提供资料时露头是否保存或是否易于进入?[一]Yes [一]No	
			露头描述(范围、交通条件、暴露程度等)	
I	2	来自挖	[掘(矿井与采石场除外)	
		I 2. 1	挖掘类型(地基、沟渠、考古、试验坑等)	
			为了收集样品,是否易进入挖掘现场?	
I	3	来自银		
			钻孔操作工的姓名:	
			钻孔名称:	
			钻孔完成日期:	
			钻孔的总深度:m	
			钻孔的测井海拔高度: m	
			间隔取样数:	
			1 如果所提供的和能应用的样品多于一个,则间隔取样的海拔(以下	n 计),,
	设	计的1	D 数或间隔样品的名称:	
		1 3.7		
		II 3.7	12 ID#:	
			13 ID#:	
			14 ID#: 顶: 底:	
			15 ID#:	
			是否作过岩石物理学的测井?[一]Yes [一]No	
		1 3.8	· 如是,列出测井类型:	
			2 如是,指出测井公司:	
		1 3.8	如是,指出测井曲线是否能得到及在何处:	
			提供资料时岩心或切块是否保存?[一]Yes [一]No	•
		1 3. 9	如是,能否借用?[-]Yes [-]No	
		1 3.9	2 如是,在何处?	
I	4		自水下挖掘:	
		II 1. 1	使用了船吗?[一]Yes [一]No	
		11 1.1	1 如是,船的名字:	
			水的大概深度m	
IJ	5	来自矿	"山或采石场:	
		I 5. !	矿山或采石场的名称:	
		F 5. 3	2 在矿山或采石场里的位置(主平巷,回采工作面或平岬	事) :
II	 6	加果で	 「是来自上面所列举的,描述其来源:	
n	7	加具	是不知道其来源,尽可能提供任何有关标本收集的细节	资料:
		~n /	, 	

沉积地球化学常用数据°

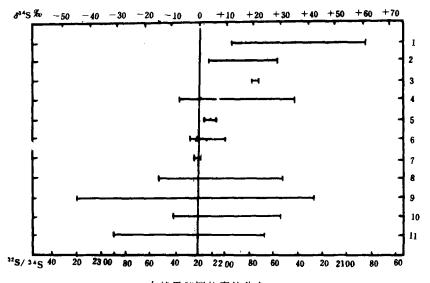
刘文均


(成都地质学院)

1. D. O. C. S 同位素在自然界中的分布

自然界中氢同位素的分布 (据 Friedman 和 O'Nei, 1972)

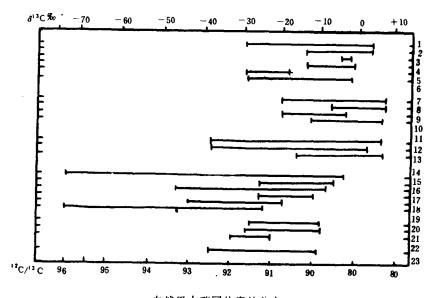
上梅永。2-兩永。3-75、4-东非湖水。5-大气氣。6-大 气甲烷。7-天然气甲烷。8-热水甲烷。9-油田卤水。 10-木质。11-石油。12-粘土。13-海洋沉积物。14-变 质岩。15-内华达岩基。16-加里福尼亚岩基。17-玄 武岩。18-黑曜岩。19-碳质珠粒陨石。20-玻陨石。 21-下地壳岩石。22-海洋蛇纹岩。23-大陆蛇纹岩


自然界中氧同位素的分布

(据 H. J. Rösler, H. Lange, 1972) .

1-沉积石英;2-沉积方解石;3-沉积海水硫酸盐;4-热液石英;5-热液方解石;6-热液硫酸盐;7-变质岩;8-伟晶岩;9-酸性岩;10-基性岩;11-超基性岩;12-球粒陨石;13-大气;14 岩浆水;15-大洋水;

16-湖水,17-河水,18-雨水,19-冰和雪


[■] 本文系《沉积地球化学应用》讨论讲座结束后,补充的一些常用数据

自然界硫同位素的分布

(据 H. J. Rösler, H. Lange, 1972)

1-海湾海岸地区的硫酸盐;2-其他蒸发岩——硫酸盐;3-海水中的硫酸盐;4-热液硫酸盐; 5-雨水和雪水中的硫酸盐;6-岩浆成因硫化物;7-陨石中的硫化物;8-热液硫化物;9-沉积硫化物; 10-原油中的"硫";11-煤中的"硫"

自然界中碳同位素的分布 (据 H. J. Rösler 和 H. Lauge, 1972)

1-岩浆碳;2-石墨;3-金刚石;4-热液 CaCO3;5-岩浆岩中的碳;6-岩浆喷氧;7-沉积碳酸盐;8-压岩、化石;9-氧化矿带的碳酸盐;10-沉积碳酸盐矿物;11-变质岩;12-石墨;13-白云岩、大理岩;14-有机成因碳;15-水生植物;16-陆地植物;17-动物;18-煤、木质紊;19-石油和天然气;20-石陨石;21-铁陨石;22-石铁陨石;23-大气中的 CO2

2. 氧同位素古温度方程

方解石——水(据 J. Erze,1983)

$$t(^{\circ}C) = 17, 0 - 4, 52(\delta c - \delta w) + 0.03(\delta c - \delta w)^{2}$$

δc=在 25°C 时碳酸盐产生的 CO₂ 的 δ¹8O 值(PDB)

δw=在 25℃ 时与水平衡的 CO₂ 的 δ¹®O 值(SMOW)

文石---水(据 Grossman and Ku, 1981)

$$t(^{\circ}C) = 19.00 - 3.52(\delta c - \delta w) + 0.03(\delta c - \delta w)^2$$

生物成因硅酸盐----水(据 Labeyrie, 1974年)

$$t(^{\circ}C) = 16.9 - 4.1(\delta s - \delta w + 0.5)$$

δ8=硅酸盐的 δ¹⁸O smow 值

δw=H₂O的 δ¹⁸O smow 值

磷酸盐——水(据 Longinelli and Nuti, 1973)

$$t(^{\circ}C)$$
 111. 4-1. $3(\delta p - \delta w + 0.5)$

 δp =磷酸盐的 δ^{18} O smow

 $\delta w = H_2O$ 的 $\delta^{18}O$ smow

3. 在砂岩/页岩系列中,自生矿物——水的氧同位素分馏方程

 $(10^3 \cdot Ln_{f'' - A} - A - 10^6 T^{-2} - B)$

式中: 1949-4为矿物及水的氧同位素差值, T绝对温度

矿物	A	В	资	料	来	源	
硬石膏	3.21	4.72	Cı	niba et	al.198	1	
方解石	2.78	3. 39	01	Neil et	al,196	69	
绿泥石	1.56	4.70	Went	ner 8 1	Taylor,	1971	
白云石	3.14	3.14 2.0 L. S. Land, 1983					
高岭石	2. 5	2. 87	I	Esling	er,197	I	
伊利石	2. 43	4. 82	Esling er	and S	. M Sav	in . 1973	
石 英	3. 38	3. 40	Cla	ayton (et al.19	72	
蒙脱石	2. 67	4. 82	Yeh a	nd S. N	1. Savir	.1976	
菱铁矿	2. 88	2.77		Hecke	r.1976		
重晶石	3. 01	7.3		Chiba	,1979		

4. 元素在地壳、沉积岩、深海沉积物以及海水、河水中的含量(ppm)

元素	r	拉 ^① 克值					·····	
符号	克拉 ^① 克值	板岩	砂岩	碳酸盐	碳酸岩	粘土	海 水®	河 水管
Ag	0. 07	0. 07	0. 0x	0. 0X	0. 0X	0.11	4×10-5	3×10-4
Al	82300	80000	25000	4200	20000	84000	0. 002	0.05
As	1.8	13	1	1	1	13	0.004	0.002
Au	0.004	0.00X	0. 00X	0. 00x	0.00X	0. 00X	4×10-6	2×10-6
В	10	100	35	20	55	230	. 4.5.	0.02
Ba	425	580	X0	10	190	2300	0. 002	0.05
Be	2. 8	3	0. X	0. X	0. X	2.6	6×10-7	
Bi	0.17	?	?	?	7		2×10 ¹⁵	
Br	2. 5	4	1	6.2	70	70	65	. 0.02
Ca	41500	22100	39100	302300	312400	29000	411	14.6
Cd	0. 2	0.3	0.0x	0. 035	0. 0X	0.42	5×10-5	F 15 12 1 2 1 1
Ce	60	59	92	11.5	35	345		
CI	130	180	10	150	21000	21000	18980	
Co	25	19	0.3	0.1	0.7	74	5×10-5	2×10-4
Cr	100	90	35	11	11	90	0.0003	0. 001
Cs	3	5	0. X	0. X	0.4	6	4×10-4	3×10-6
Cu	55	45	х	4	30	250	5×10-4	0.007
Er	2.8	2. 5	4. 0	0.5	1.5	15		
Eu	1.2	1.0	1.6	0. 2	1.6	6	,	
F	625	740	270	330	540	1300	1.3	O. 1
Fe	56300	47200	3800	3800	9000	65000	0. 002	0.04
Ga	15	19	12	4 .	. 13	20	3×10-5	1×10-4
Gđ	5. 4	6. 4	10	1.3	3.8	38	· · · · · · · · · · · · · · · · · · ·	
Ge	1.5	1.6	0.8	0.2	0. 2	2	5×10-5	
Hf	3	2. 8	3. 9	0.3	0.41	4. 1		
Hg	0.08	04	0.03	0.04	0. 0X	0. X	3×10-5	7×10 ⁻⁶
Но	1.2	1.2	2. 0	0.3	0.8	7,5		
I	0.5	2. 2	1.7	1.2	0.05	0. 05	0.06	0. 007
ln	0.1	0. 1	0. 0X	0. 0X	0. ÖX	0.08		
K	20900	26000	10700	2700	2900	25000	399	
La	30	92	30	X	10	115	3×10-4	
Li	20	66	15	5	- 5	57	0.18	0. 01
Lu	0. 5	0. 7	1.2	0.2	0.5	4.5		
Mg	23300	15000	7000	47000	4000	21000	1290	3.8
Mn	950	850	X0	1100	1000	6700	0. 0002	0. 008
Мо	1.5	2.6	0.2 .	0.4	- 3	27	0. 01	5×10-4
Na	23600	9600	3300	400	20000	40000	10760	5. 1
Nb	20	11	0. 0X	0.3	4. 6	14	1×10-5	
Nd	28	24	37	4.7	14	140		
Ni	75	68	2	20	30	225	·5×10-4	0. 002
P	1050	700	170	400	350	1500	70.00-0.1	
Pь	12.5	20		9	9	80	3×19-4	0. 001
Pr	8. 2	5.6	8.8	1.1	3. 3	33		
Ra		· .	<u>,</u>	j 24. '5 j ·		; - -	1×10-10	
Rb	90	140	60	3	10	110	0. 12	0. 001
S	260	2400	240	1200	1300	1300	271	
Sb	0.2	1.5	0. 0X	0. 2	0.15	1.0	2×10-4	0. 001
Sc	22	13	. 1	1	2	19	6×10-7	4×10 ⁻⁶

Se	0. 05	0.6	0.05	0.08	0.17	0.17	2×10 ⁻⁴	2×10-4
Si	281500	73000	368000	24000	32000	250000	0.5-10	
Sm	6.0	6.4	10	1.3	3.8	38		
Sn	2	6	0. X	0. X	0. X	1.5	1×10-5	
Sr	375	300	20	610	2000	180	8	0.06
Ta	2	0.8	0.0X	0. 0X	0. 0X			
Тъ	0.9	1.0	1.6	0.2	0.6	6		
Th	9.6	12	1.7	1.7	X	7	5×10-4	1×10-4
Ti	5700	4600	1500	400	770	4600	0.001	0.01
TI	0.45	1.4	0.82	0. 0X	0.16	0.8	1×10-5	
Tm	0.48	0. 2	0.3	0.04	0.1	1.2		
U	2.7	3. 7	0.45	2. 2	0. X	1.3	0. 0033	1×10-4
v	135	130	20	20	20	120	0. 002	0. 001
W	1.5	1.8	1.6	0.6	0. X	x	1×10-4	3×10 ⁻⁵
Y	33	26	40	30	42	92	3×10 ⁻⁶	7×10-8
Yb	3. 0	2.6	4.0	0.5	1.5	15	[
Zn	70	95	15	20	35	165	0. 002	0.03
Zr	165	160	220	19	20	150	3×10 ⁻⁵	
REE							10-8-10-8	1×10-8-1×10-4

- ①据泰勒,1964
- ②据图雷克莱因,K.K和韦德波尔,1961
- ③据 Drever. J. I. 1982 及 Rösler, H. J 等 1972
- ④据 Drever. J. I. 1982 及 Martiu. J. M 和 Meybock. M, 1972

5. 方解石、文石、白云石中微量元素的分配系数(D)(据 J. Veizer, 1983)

= 30	方	解石	文 石	白云石
元素	报道值	推 荐 值	报 道 值	报道值
	0. 027-0. 4	0.13直接沉淀	0.9-1.2	0. 25-0. 06
_		0.05 文石→成岩低镁方解石		
Sr		高镁方解石→成岩低镁方解石		,
	,	0.03 低镁方解石→成岩低镁方解石		
Na	0. 00002-0. 00003	OF THE PROPERTY OF THE PROPERT	$\sim 0.00014(3-4\times Dc^{Na})$	同 DeNa(?)
Mg	0. 013—0. 06		~0.0006—0.005	
	(0.0008-0.12)			, ,
Fe	1≤ <i>x</i> ≤20			
Mn	5.4-30(17000)	6 直接沉淀	0.86	
		15 文石→成岩低镁方解石	$\left(-\frac{1}{2}-\frac{1}{3}D_{c^{Mn}}\right)$	
		高镁方解石→成岩低镁方解石	2 3	·
i		30 低镁方解石→成岩低镁方解石		
Zn	5-20(50)		-5	
Co	2—5(8)	·		
Ca	8-30(70)		1.5-7	•
Cu	-25(15-40)		~2.5(1-10)	
Ba	0.1-0.4(3)		1-2(5)	
Vož+	< 0. 02		0.3-1.2	

6. 海洋方解石、文石和白云石中微量元素的近似平均的含量(ppm)

(据	J.	Veizer	1983	年)
----	----	--------	------	----

元款	方 解	石	文	石	白	云 石				
Ba	0. 2-0. 8	3	2-	-4	0.1-0.5					
Sr	1000		7000-	-9400	470550					
Na	200300)	15	00-	≤11	0-160				
Mg	16300754	100	750-	-6300	13	0400				
Fe	239		-	-	3—50					
Mn	1		0. 1-	-0.6	1					
Zn	1039		1	0	24	93				
Co	0. 10. 2	:	-	_	0.	5—1				
Cd	0.4-1.5	;	0.1-	-0.3	0.	31				
Cu	719		0. 5	5	100-300					
UO2	<0.1		· 1-	-4	L					

说明:在沉淀过程中进入方解石(或文石、白云石)中的微量元素的数量,受下列方程和 D(分配系数)的控制。

$$(\frac{^{\bullet}Me}{^{\bullet}Ca})_{\bullet} = D (\frac{^{\bullet}Me}{^{\bullet}Ca})_{\bullet}$$

式中mMe 为微量元素的克分子浓度

€Ca 为钙的克分子浓度

S和w分别为固体矿物和液体。

7. 沉积岩中稀土元素的平均含量(ppm)

岩类	平均含量	高峰元素	次高峰元素	特殊元素含量次序
光明岩中	184.63	Ce(57.72)	(32.6) إيا	Eu(1.2)>Ho(1.1)>Tb(0.86)>Tm(0.48)>Lu(0.45)
展 岩(2)	200	Ce(67)	La(34.0)	Eu(1.4)>Ho(1.1)>Tb(0.99)>Tm(0.5)>Lu(0.48)
砂 岩(2)	100. 45	Ce(33)	La(17)	Eu(0.7)>Ho(0.6)>Tb(0.5)>Tm(0.27)>Lu(0.25)
灰 岩(2)	25	Ce(6.5)	Na(4.6)	Ho(0.16)>Tm(0.07)>Lu(0.066)
近代碳(3) 酸 盐	22	CeC	Y(4.15)	Ho(0. 21)>Eu(0. 1)>Lu(0. 063)Tb(0. 058)>Tm(0. 054)
海洋沉(*) 积 物	166. 24	Ce(56)	Na(27)	Eu(1.4)>Ho(0.9)>Tb(0.85)>Tm(0.39)>Lu(0.3)
海水	0. 013—0. 0253 (ppb)	Y n La		特殊稀土总量:0.00061−0.00064 ppb Eu <ho< td=""></ho<>

(1)郭 宏,1982年; (2)罗秒夫(1967年)主要据俄罗斯地台;

(3)哈金斯,1962年; (4)哈金斯(1962年)

8. 不同地质时代沉积岩中稀土元素平均含量(ppm)(据郭承基,1985年)

时代	ΣR	EE	市域 示据	次高峰元素			<u>. </u>	殊			-da	含			γ <u>γ</u> -		, —			
P3 1C	測定	佑 算	商畔儿系	人的工艺儿童		特		11		7/4		. A		F1		HI,	<i>(</i> λ	17		
太古代	132. 2	132. 35	Ce(51.75)	La(25)	Eu(1.1)) > ′	Tb(0	. 52)	>1	Ho(0.	51)	>Tı	m(0.	22)	>Lu	(0.	21)		
中元古代	162. 2	.162.74	Ce(62.5)	La(30.5)	Eu(C). 78	>>	Ho((. 74	>>	Ть(0	61)	>1	m(0	. 35)	>L	u(0	. 33)		
上元古代	162. 27	162. 74	Ce(60)	La(30.2)	Ho((). 84	>>	Eu(0. 83	>>	Ть(0	. 59)	>T	m(0	. 37)	>L	u(0	. 35)		
古生代	223. 8	224. 49	Ce(90. 35)	La(41.45)	Eu(I	. 13	<u>>></u>	Ho(1. 04)>	Ть(0	. 78)	>1	m(0	. 46)	>L	u(0	. 44)		
中生代	282	288. 44	Ce(98)	La(50)	Hot	(1. 4	7):	>Eu	(1.4	ij	b(1.	25)	>Tn	n(0.	64)	>Lu	(0.	60)		

9. 我国南岭地区不同时代沉积岩中稀土元素平均含量(ppm)

(胡云中,1987)

भी सि	ΣREE	高峰元素	次高峰元素		特	殊	λĊ	ĸ	含	ήŧ	伙	14	
四条群	152	Ce(60.38)	La(30.33)	Ho(1.	12)	>Eu(0	. 94)	>Tb((. 86)>	>Tm(0	. 50)>	> Lu (0	. 49)
极关群	186	Ce(76.01)	La(38, 21)	Ho(1.	23)	>Eu(1	. 17)	>Tb((. 97)>	>Tm(0	. 55)=	= Lu(0	. 55)
設上系	206	Ce(84.08)	La(40, 25)	Eu(1.	58),	>Ho(1	. 37)	>Tb()	. 15)>	>Tm((. 59)>	>Lu(0	. 57)
寒武系	223	Ce(92.75)	La(50.30)	Eu(1.	24).	>Ho(1	. 23)	>Tb((). 99)>	>Tm(0	. 52)	>Lu(0	. 49)
奥陶系	272	Ce(110.21)	La(63.58)	Eu(1.	55)	>Ho(1	. 27)	>Tb()	. 26)>	>Tm(0	. 53)	>Lu(0	. 49)
志附系	189	Ce(78.53)	La(40.31)	Eu(1.	13)	>Ho(1	. 06)	>Tb((). 93)>	>Tm(0	. 46)>	>Lu(0	. 45)
兆盆系	130	Ce(53.46)	La(23, 22)	Eu(0.	76).	>Ho(0	. 74)	>Tb((). 62)>	>Tm(0	. 33)>	>Lu(0	. 32)
石炭系	86	Ce(33.59)	La(21.59)	Eu(0.	54)	>Ho(0	. 47)	>Tb((. 38)>	>Tm(0	. 22)=	= Lu(0	. 22)
.	51	Ce(17.23)	La(11.78)	Eu(0.	38)	=Ho(0	. 38)	>Tb((. 32)>	>Tm(0	. 16)=	= Lu(0	. 16)
. 任系	215	Ce(86.45)	La(43.92)	Ho(1.	66)	>Tb(1	. 28)	>Eu(1	.03)>	>Tm(0	.74)>	>Lu(0	. 72)