《沉积地球化学应用讲座》(九)

第九讲 沉积作用过程中稀土元素的地球化学(1)

《沉积地球化学应用讲座》编写组

(成都地质学院沉积地质矿产研究所)

稀土元素在探索岩浆成因和地球演化方面得到了广泛的应用。沉积作用过程中稀土元 素的地球化学行为有其独特之处。首先,沉积作用大部分是在水体中发生的,不同的稀土元 素在水溶液中络合效应的差别,有可能造成轻、重稀土的分馏,其次,稀土元素主要为正三价 态,然而 Ce³⁺可以氧化成不溶四价 Ce⁴⁺,Eu³⁺可能还原成 Eu²⁺,由于沉积环境的氧化还原电 位不同,造成这两个元素与其它三价稀土分离。最后,有些稀土元素具有弱的放射性,尤其是 ¹⁴⁷Sm 衰变为 ¹⁴³Nd(半衰期为 1.06×10¹¹年),结合 Sm/Nd 在地壳相对于地幔的分馏,使 ¹⁴³Nd/¹⁴⁴Nd之比可用来探索稀土元素的来源。

一、引言

稀土元素(REE),一般是指周期表中 57 号到 71 号镧系元素组(lanthanides)。包括镧 (La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、 铒(Er)、铥(Tm)、镱(Yb)、和镥(Lu)等 15 个端元。除钷外,其余都是自然元素。由于 39 号元 素钇(Y)与稀土元素地球化学性质相似,常放入到稀土元素组中进行讨论。

按稀土元素质量数的差别,可分为轻、重稀土元素。

轻稀土元素(LREE),或称之为铈组稀土,具体包括 La、Ce、Pr、Nd、Sm、Eu。

重稀土元素(HREE),或称钆组稀土,有Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及Y。

有时采用三分法,以 Sm、Eu、Gd、Tb 和 Dy 为中组稀土(MREE),其前(元素周期表上)五 个为轻稀土元素,后五个为重稀土元素。

为了讨论稀土元素的地球化学性状(如含量和分馏特征),在沉积学研究中常用数值法和图解法相结合来进行数据整理。图解法是直观地表示稀土元素富集和亏损的一种图式。作法是以 La 到 Lu 的原子序数为横坐标(也有以离子半径为横坐标),其中 Y 排在 Dy 和 Ho 之间。以所测样品的每个 REE 含量除以球粒陨石或页岩中对应元素的含量作为纵坐标。纵标的间隔以对数值或几何值标定。这种图解叫做 REE 的分布型式或分配模式(REE Pattern),而处理过程称之为 REE 的标准化或归一化(normalization)。这种图式的优点是消除 了元素含量的偶奇效应(Odd-Haskin 规则),使图式上的曲线变为较平直的线条。

球粒陨石的稀土丰度一般代表地球原始组成的 REE 含量,而页岩平均稀土丰度则反映 上部地壳的稀土元素组成。由于沉积物或沉积岩的 REE 分布型式与页岩相似,较轻微的差 异都在图上有明显反映,故常采用页岩的标准化来比较不同沉积物中 REE 的分馏情况。为 了不同的目的,例如对比沉积物的来源,也采用球粒陨石标准化。同时应该注意到,沉积物 (岩)中 REE 的浓度与球粒陨石极为不同,球粒陨石标准化的结果加强了元素间的差异性, 而在不同相之间的差异缩小。为了便于制作标准化图解,现将有关标准中 REE 的含量列于 下表:

表 1 标准样品中稀土元素的丰度(ppm)

元業	La	Ce	Pr	Nd	Sm	Eu	Gđ	ТЪ	Dy	Но	Er	Τm	XP.	Lu	Y	资料来概
平均页岩 坦合样	41	83	10.1	38	7.5	1. 61	6. 35	1. 23	5.5	1. 34	3. 75	0. 63	3. 53	0. 61		Piper. 1974
C1 球 粒 陨 石	0. 312	0. 813	0. 123	0. 603	0. 197	U. 074	Q. 26	0. 047	0. 323	0. 072	0. 21 1	0. 0326	0. 21	0. 0323	2. 08	Anders et. al 1982

注,其它球粒陨石的 REE 含量参见《国外地质参考资料》1981,20 期 1-14 页

稀土元素配分模式,即样品相对于某标准而作出的丰度曲线,有平坦型、富集型和亏损 型之分(LREE 相对于 HREE 而言),并由其曲线斜率大小来表征分异的强度。

Ce和 Éu 大洋海水和其中的沉积物(岩)中的行为与其它稀土元素不同,浓度波动幅度 较大,与其相邻两边元素相比出现异常(anormaly)。通常用δCe=Ce/Ce*或 δEu=Eu/Eu*表示,值域为 1≤δ≠0≤1。式中 Ce、Eu 代表样品中 Ce 或 Eu 的标准化值;Ce*和 Eu*则代表该 元素相邻两边元素标准化数值间的直线内插值。以 Ce 为例: Ce 异常 = Ce/Ce* = <u>Z(Ce/Ce 页岩)</u> <u>La/La 页岩 + Pr/Pr 页岩</u>。根据δ值的大小可分三种类型:亏损型(δ<1, 负异常), 分布曲 线在该元素处为一谷;富集型(δ>1, 正异常), 分布曲线在该元素处为一峰; 无异常(δ=1)则 为平坦的线段。

二、 河水中的稀土元素...

迄今为止,有关河水中 REE 的资料不多。河流中 REE 的含量相当于14×10⁻⁵ppm。在河流的上、中、下游,REE 的含量变化较大,但其配分型式很相似,量锯齿型,LREE 相对于 HREE 稀有富集(图1)。Ronov(1967)指出,法国纪龙德河(Girode River)的溶解载荷和悬浮载 荷的 REE 模式极为相似,而且大部分 REE 聚积在悬浮物中,溶解载荷的丰度要低得多。

三、 海水中的稀土元素

在本世纪六十年代,由 Goldberg(1963)和 Hogdah(1968)等人首次完成了北大西洋和部 分太平洋海水中 REE 的测定。当时报道的海水 REE 的浓度在10⁻¹²摩尔/千克的范围内。最 近的研究证实了这些结果(Piepgras 等人1979, De Baar 等1985, Elderfield 等1982, Musuda 等 1979)。表2列出了大洋表层水和深水区的 REE 浓度。

	东北大	西洋	西山	化大西洋	东	南太平洋	西	北太平洋			
	(Elderfield	等)	(De	: Baar 等)	(Kinkhammer)						
	表层	2500m	表层	2486m	表层	2500m	表层	2500m			
La	36.7	29.4	15.0	36	4.9	30	8.3	47			
Ce	66. 3	26. 1	86	17	3.1	3.5	10	9.0			
Nd	34. 3	25. 0	-	—	3.4	1.6	5.1	30			
Sm	6.01	4.75	3.7	3. 3	0.56	2.7	1.6	5.3			
En	6.15	0.895	0.78	0.72	0.20	0.8	0.33	1.4			
Gd	5.59	7.19	_	-	1.1	5.0	1.6	8.2			
Dy	5.00	6.10	-	-	1.3	6.3	2.0	9.7			
Er	3.63	5.09	-	-	1.2	7.0	1.7	9.4			
УЪ	3.15	4.79	4.3	5.0	0. 79	7.5	1.1	8.0			
		.其它深度	省略		_			<u></u>			

赛2 海水中稀土元素浓度(10-12廠尔/千克)

总的看来,大洋海水中的 REE 具有几个明显的特征:(1)浓度低。以大西洋为例,La、Ce 和 Nd 的浓度变化于10-90×10-12摩尔/千克, Pr 为3-11×10-12摩尔/千克, Eu 为0.5-1× 10-13摩尔/千克,而 Sm 到 Yb 之间的元素的变化范围大约在0.5-8×10-12摩尔/千克之间。 (2)海水的页岩标准化模式呈现轻稀土亏损而重稀土富集的分配式(图2、3)。一般深部海水 的轻,重稀土分馏比浅部海水更强烈。(3)Ce的行为与其它 REE 明显不同,以出现负异常为 特征。但浅部海水异常不明显,局部地方呈正异常,如西北大西洋所见(图2)。此外,东北大西 洋的浅部海水出负 Eu 异常(Elderfield, 1982)。(4)所有大洋区 REE 浓度随深度有增加的趋 势,即深水区富集所有的 REE;同时,轻 REE 的富集比例是比重稀土大一些(Elderfield 等, 1982, De Baar, 1985, Kinkhammer 等, 1983)。然而, 不同地区和不同元素的浓度-深度剖面有

图1 河水中 REE 的页岩标准化模式

所不同。(5)将大西洋和太平洋海水的 REE 浓度作一比较,可以发现,太平洋表层海水的 REE 浓度较低。用北大西洋2500m 水深的 REE 浓度对太平洋相当深度的海水标准化(图4)。 可以看出,太平洋深水比大西洋深水更富 Dy、Er 和 Yb 等重稀土元素而贫 Ce。

图3 马里亚纳海沟中不同深度海水的页岩标准化模式

图2 西北大西洋的 REE 模式

四、 热液流体中的稀土元素

在东太平洋隆起区分布着一系列热液喷口群。这些正在喷溢的流体富含 Cu、Zn 和 Fe 等金属元素,其温度超过300°C,pH 值低至3.8。A. Michard 等(1983)从两个地点的喷口中直 接采取了流体样品做了 REE 分析,其球粒陨石标准化模式见图5。从图中可以发现,热液流 体具强烈的轻 REE 富集而重 REE 亏损的分配形式,这与海水形成明显的对比。其次,热液 流体以铕异常的特征,En/Eu*变化于9.92-5.6之间。

五、 海水和河水中 REE 的存在形式

稀土元素在水溶液中主要以三价态 Ln³⁺形式存在,其中 Ce³⁺可氧化为 Ce⁴⁺,Eu³⁺可还 原为 Eu²⁺。对于 Yb³⁺→Yb²⁺,Sm³⁺→Sm²⁺的还原电位分别为+0.58和+0.8伏,由于其低的 电位值大大超过了纯水的稳定区间,所以在自然界不可能出现。Lu³⁺→Lu⁴⁺,Tb³⁺→Tb⁴⁺和 Dv³⁺→Dv⁴⁺的情况与此类似。

海水和河水中高电荷、大半径(Ln³⁺=1.14-0.85Å)的稀土元素极易形成络合物。镧系 元素 L³⁺ 与过量阴离子络合一般可表示如下

$$Ln^{3+}+nA^{x-\theta} \rightleftharpoons LnAn^{3-nx}$$

β 是稳定性常数。

图4 太平洋海水用东北大西洋海水标准化的 REE 模式(所有样品水深均为2500m)

图5 北纬13°东太平洋隆起热液喷口流体的 REE 球 粒陨石标准化模式。

样品采白水深约2600米相距6000米的两个热液喷口群, 22G2和24G2位于北纬12°50′30″西经103°57′10″,26G2和 28G0处于北纬12°46′50″,西经103°56′05″。(摘自 A. Michard 等,1983)

早期提出的络合物形成有 LnSo[†], LnF²⁺和 Ln[CO₃]³⁻等。苏联学者认为三碳酸络合物 Ln[CO₃]³⁻和三硫酸络合物也很重要。Turner 等(1981)总结了大量实际资料,提出三价稀土 元素可形成多种类型的络合物,有 Ln(OH)²⁺, Ln(OH)[‡], Ln(OH)^{*}, Ln(OH)⁺, LnF²⁺, LnCl²⁺, LnCl[‡], Ln(So₄)⁺, Ln(SO₄)⁵和 Ln(CO₃)⁺等形式。如果取海水的 pH 为8.2, 游离阴离子浓度分 别为[Cl⁻]=0.56, [F⁻]=3.3×10⁻⁵, [So³⁻]=9.5×10⁻⁶, [CO³⁻]=3.16×10⁻⁵, 单位摩尔; 河水的 pH=6.0, 游离阴离子浓度分别为[Cl⁻]=2.19×10⁻⁴, [F⁻]=4.9×10⁻⁶, [SO³⁻]= 1.15×10⁻⁴, [CO³⁻]=1.12×10⁻⁸, 则可通过下式求出溶液中不同类型离子和络合物所占的 比例:

某一稀土元素的浓度为游离的 Ln³⁺和各种络合物之和:

C_{Ln}=[Ln³⁺]+[LnOH]_@+[LnCl]_@+[LnF]_@+[LnCO₃]_@+[LnSO₄]_@ 游离的[Ln³⁺]在总 C_L中所占比例为:

为了表达方便起见,式中省略了络合物的具体形式,电价以及阴离子系数,笼统表示为 [LnA]。。

其它型体所占的份额可用类似的方法计算,结果列于表3、4中。

表3 海水中 REE 的存在形式及其相对比例

元家	La	Ce	Pr	Nd	Sm	Eu	Gd	Тъ	Dy	Но	Er	Tm	Yb	Lu	Y
自由离子 Ln ³⁺	38	21	25	22	18	18	9	16	11	10	· 8	11	5	5	15
Ln-羟基络合物(%)	5	5	8	9	10	13	5	11	8	8	12	21	9	21	14
Ln一氟络络合物(%)	1	1	1	1	1	1	1	1	1	1	ľ	1	1	1	3
Ln-氯络络合物(%)	18	12	12	10	8	10	4	8	5	5	4	5	2	1	7
Ln-硫酸络合物(%)	16	10	13	12	11	9	6	9	6	5	4	6	3	1	6
Ln-碳酸络合物(%)	22	51	41	46	52	50	74	55.	68	70	70	55	81	71	54

由表可见,三价稀土在海水中主要以碳酸盐络合物和自由离子的形式存在,其次为硫酸 络合物和氯络络合物,而以氟络络合物形式出现的极少,可以忽略不计。河流淡水中稀土元 素主要呈自由阳离子,仅有20%左右的硫酸络合物。

表4 河水中 REE 的存在形式及其相对比例

元索型式	La	Ce	Pr	Nd	Sm	Eu	Gd	Ть	Dy	Но	Er	Tm	Yb	Lu	Y
自由离子 Ln ³⁺	73	72	72	70	68	71	63	67	65	65	63	66	58	59	63
Ln-羟基络合物(%)	<1	< 1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ln-氟络络合物(%)	1	3	2	3	3	3	5	6	6	7	7	8	7	8	17
Ln-氯络络合物(%)	<1	<1	<1	<1	<1	< 1	<1	< 1	<1	<1	< 1	<1	< 1	<1	<1
Ln-硫酸络合物(%)	25	22	23	24	25	21	22	22	21	19	19	20	17	15	14
Ln一碳酸络合物(%)	1	3	2	3	4	4	9	4	7	8	10	6	17	17	4

Turner(1979)比较了不同稀土盐类的浓度积(表5),发现海水中三价稀土元素的浓度对 这些矿物远远没有达到饱和。因此,沉积物中将没有独立的稀土矿物出现,而只能以其它形 式,如类质同象和表面吸附等形式参与沉积作用过程。

	氢	氧化物	碳	酸盐	磷	酸盐	海水中 Ln ^{s+} 的观
	logKs(OH)	允许最大浓度 log[Ln ³⁺]	logKs(CO ₃)	允许最大浓度 log[Ln ³⁺]	logKs(PO4)	允许最大浓度 log[Ln ³⁺]	测值 log[Ln ^{s+}]
La	21.7	-2.3	-26.4	-6.3	-18.4	-8.7	-11.2
Ce	21.3	-2.7	-	-	—	—	-10.7
Eu	18.9	-5.1		—	-		-13.0
Gd	17.0	-7.0	-25.2	-5.7	-18.3	-8-6	
Y	18.9	- 5. 1	23. 6	-4.9	-	-	-11.6
Lu	15.9	- 8.1					-13.2

表5 海水中(盐度35‰, pH=8.2)不同种类稀土矿物的浓度积常数及与海水的观测值比较

(1)铈(Ce)的地球化学行为,Gddborg 等1963年首先发现了海底 Fe-Mn 结核中 Ce 的富 集,这也为最近对太平洋和大西洋结核的研究所证实(Cullers,1979,Elderfield,1984)。当时设 想在海洋环境中 Ce³⁺氧化为不溶的四价态[CeO₂]进入结核中的 MnO₂矿物相并优先于其它 REE 从海水中直接沉淀出来。后来海水中 Ce 的亏损被发现,Ce 在结核中富集同时在海水中 亏损被认为有力地支持了 Ce 与结核共沉淀的机理。最近的研究发现,海水既有 Ce 的负异 常也有正异常出现,而负 Ce 异常在结核中也有报导(Ottonello,1978)。看来 Ce 异常主要受 环境的氧化还原电位和 pH 变化制约,Ce 的形为可做为环境氧化还原变化的指标。 铈(Ce)的固体和溶解型体之间的关系示于图6。

图6 25℃、1大气压条件下 Ce 的溶解型体和固体关系的 EhpH 相图

线 A:示溶解物质 Ce³⁺/Ce (OH)³⁺的优势场边界:Eh = 1.731 - 0.1182pH.线 B:示固体相 Ce2Os/CeO2的相对稳定边界:Eh = 1.559 - 0.0591pH.线 C:示固体相 Ce2Os溶解为(Ce(OH)³⁺)的边界:Eh = 0.422 + 0.0591pH + 0.0591 log (Ce (OH)³⁺).线 D:示固相 CeO2 溶解为 Ce(OH)³⁺的边界.log(Ce(OH)³⁺).线 D:示固相 CeO2 溶解为 Ce(OH)³⁺的边界.log(Ce³⁺) = 22.15 - 3pH.数字是溶解物质的摩尔浓度。线 a 和 b 示水的稳定场分别以 Eh = 1.22 - 0.059pH 和 Eh = 0.059pH 面出。(摘自 Pourbaix, 1966)

从图中可以得出,水溶液中 Ce 主要以 Ce³⁺形式出现,Ce(OH)针仅能在氧化的碱性溶液 中存在。海水和沉积物中测量的 Eh 值范围为0.25~0.45伏,平均为0.35V。从关系式:

$$Ce^{3+} + 2H_2O = Ce(OH)^{2+} + 2H^+ + e^{-1}$$

Eh = 1.731 - 0.1182pH + 0.0591 log
$$\frac{[Ce(OH)_2^2+]}{Ce^{3+}}$$

取 pH=8.2,则海洋中 $\frac{Ce(OH)}{Ce^{2+}}$ = 1.156 × 10⁻⁷,看来海水中 Ce(OH)計的浓度极底。取大 西洋海水的 Ce 浓度的平均值为40×10⁻¹²摩尔/千克,如果不考虑活度系数的影响,则 Ce(OH)計的深度为4.624×10⁻¹³摩尔。

Pourbaix (1966)提出,在接近海水的 Eh 和 pH 值条件下, Ce 以下述方式沉淀:

Ce(OH) $\ddagger CeO_2 + 2H^+$

Ce(OH)計和 CeO₂的优势区间以不同的 Ce(OH)計浓度投影于图6上,其边界以 log(Ce(OH)計 =19.22-2pH 限定。在高 Eh 值时,Ce 要比其它 REE 更易溶解。如果溶液的 Eh 值底,则含 水的 Ce₂O₃的沉淀出现。

$$2Ce(OH)_{2}^{2+}+2e^{-\Box}Ce_{2}O_{3}+H_{2}O+2H^{+}$$

其氧化-还原电位与 pH 值的关系如下:

 $Eh = 0.422 + 0.0591pH + 0.0591log(Ce(OH)_{2}^{2+})$

但是,在海水的 Eh 和 pH 范围内,由上述两个方程式计算出的 Ce(OH)针浓度,要比海水中 总 Ce 的浓度大几个数量级。看来,海水中 Ce 的浓度变化不受上述两个反应的控制,更有可 能是以下述方式发生:

 $Ce^{3+}+4OH^{-}$ $Ce(OH)_{1}+e^{-}$

在 pH 值为8时,反应平衡时的 Eh 值是0.34V;其次,由于 CeO2比 Ce(OH),更稳定,CeO2 实际上控制着这个反应的 Eh 值,反应的 Eh 比这个值要低。根据不同数据计算,上述反应的 Eh 变化于0.15~0.27V 之间,可见 Ce 的氧化可出现在大多数海洋环境中(图7)。然而 Eh 低 于0.2~0.45V 以下的地方,Ce 的氧化将不会发生。

进一步考虑海水中 Ce 的固相矿物的饱和度,也能说明这一问题。25°C 时,海水中: Ce(OH) (与Ce⁺⁺+4OH⁻的溶度积 Ks(ce(OH)) = ace⁺·a⁺oH⁻=2×10⁻⁴⁸,取活度系数均为1,pH= 8. 0,则 Ce(OH),与 Ce⁴⁺平衡时,[Ce⁴⁺]=8. 34×10⁻⁴⁵摩尔/升与海水中由方程 Ce³⁺=Ce⁴⁺+ e,E^o=1. 28V 计算的 Ce⁴⁺的浓度7×10⁻²⁷摩尔/升相对比(Y. L. Wang, 1985),明显的,海水对 Ce(OH),是过饱和的。这就意味着 Ce 从海水中不断的氧化而移走,Ce 在海水中的停留时间 要比其它 REE 短得多。

图7 在25°C,1巴大气压条件下 Ce 的离子和固体相稳定性关系的 EhpH 图(D. G. Brookins, 1983) +为正常海水的 Eh 和 pH 值投影点。

(2)铕(Eu)的地球化学行为:Eu 是稀土元素组中唯一能还原为2价的元素。根据可靠资料,Eu²⁺在矿物中确实是存在的,Eu²⁺,可在菱锶矿、磷氯铅矿、高温富 Sr 的正长石、热液形成的萤石和方解石中找到。似乎没有充分的证据说明海水中有 Eu²⁺存在。通常认为三价 Eu³⁺还原为二价 Eu²⁺需要极还原的条件。

图8 Eu 离子和其固相矿物稳定关系的 Eh-pH 相图 Eu²⁺--Eu³⁺的边界方程,Eh=-0.43+0.059 log(Eu²⁺/Eu²⁺)画出 Eu³⁺--Eu(OH)₃的边界方程,pH=6.84-0.33 log[Eu²⁺]画出 Eu²⁺--Eu(OH)₃的边界方程,Eh+0.80-0.059 log(Eu²⁺)=0.18pH 画出 Eu²⁺--Eu(OH)₂的边界方程 pH=13-0.5 log(Eu²⁺) 水的稳定场由下列关系限定: 2H₂O+2e⁻与H₂+2OH⁻ Eh=0.0-0.059pH 2H₂O⇒O₂+4H⁺+

4e Eh=1.23-0.059pH

有关 Eu 的地球化学资料十分稀少,唯一报导的 Eu³⁺+e⁻→Eu²⁺反应的 Eh 值为 -0.43,Eu²⁺或 Eu³⁺离子与固体相矿物的稳定图形见图8。在海洋环境中,如果主要由细菌 作用导致强还原环境,其 Eh 值的量的大小可由碳酸或硫酸的还原作用确定。 $HCO_{\overline{1}} + 9H^+ + 8e^- \Longrightarrow CH_4 + 3H_2O$

 $SO_1^2 + 9H^+ + 8e^- \pm HS^- + 4H_2O$

在 pH=8.2时,取海水中 log[SO¹⁻]/[HS⁻]=2,log[HCO₅]/[CH₄]=2,则有 Eh=-0.303 伏。其中,平衡时海水中 Eu²⁺/Eu³⁺=7.097×10⁻³可以预料,Eu³⁺的量极小。在正常的海水 中,取平均 Eh=0.35伏,则 Eu³⁺/Eu³⁺=1.58×10¹³。显然,现代大洋水中 Eu 主要以三价形式 出现。

•